On the Relation between the $S$-matrix and the Spectrum of the Interior Laplacian
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 57 (2009) no. 2, pp. 181-188.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The main results of this paper are: 1) a proof that a necessary condition for $1$ to be an eigenvalue of the $S$-matrix is real analyticity of the boundary of the obstacle, 2) a short proof that if $1$ is an eigenvalue of the $S$-matrix, then $k^2$ is an eigenvalue of the Laplacian of the interior problem, and that in this case there exists a solution to the interior Dirichlet problem for the Laplacian, which admits an analytic continuation to the whole space $\mathbb R^3$ as an entire function.
DOI : 10.4064/ba57-2-11
Keywords: main results paper proof necessary condition eigenvalue s matrix real analyticity boundary obstacle short proof eigenvalue s matrix eigenvalue laplacian interior problem there exists solution interior dirichlet problem laplacian which admits analytic continuation whole space mathbb entire function

A. G. Ramm 1

1 Mathematics Department Kansas State University Manhattan, KS 66506-2602, U.S.A.
@article{10_4064_ba57_2_11,
     author = {A. G. Ramm},
     title = {On the {Relation} between the $S$-matrix and the {Spectrum} of the {
Interior} {Laplacian}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {181--188},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {2009},
     doi = {10.4064/ba57-2-11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba57-2-11/}
}
TY  - JOUR
AU  - A. G. Ramm
TI  - On the Relation between the $S$-matrix and the Spectrum of the 
Interior Laplacian
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2009
SP  - 181
EP  - 188
VL  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba57-2-11/
DO  - 10.4064/ba57-2-11
LA  - en
ID  - 10_4064_ba57_2_11
ER  - 
%0 Journal Article
%A A. G. Ramm
%T On the Relation between the $S$-matrix and the Spectrum of the 
Interior Laplacian
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2009
%P 181-188
%V 57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba57-2-11/
%R 10.4064/ba57-2-11
%G en
%F 10_4064_ba57_2_11
A. G. Ramm. On the Relation between the $S$-matrix and the Spectrum of the 
Interior Laplacian. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 57 (2009) no. 2, pp. 181-188. doi : 10.4064/ba57-2-11. http://geodesic.mathdoc.fr/articles/10.4064/ba57-2-11/

Cité par Sources :