Attractors of Strongly Dissipative Systems
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 57 (2009) no. 1, pp. 25-31.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A class of infinite-dimensional dissipative dynamical systems is defined for which there exists a unique equilibrium point, and the rate of convergence to this point of the trajectories of a dynamical system from the above class is exponential. All the trajectories of the system converge to this point as $t\to +\infty$, no matter what the initial conditions are.This class consists of strongly dissipative systems. An example of such systems is provided by passive systems in network theory (see, e.g., MR0601947 (83m:45002)).
DOI : 10.4064/ba57-1-3
Keywords: class infinite dimensional dissipative dynamical systems defined which there exists unique equilibrium point rate convergence point trajectories dynamical system above class exponential trajectories system converge point infty matter what initial conditions class consists strongly dissipative systems example systems provided passive systems network theory see

A. G. Ramm 1

1 Mathematics Department Kansas State University Manhattan, KS 66506-2602, U.S.A.
@article{10_4064_ba57_1_3,
     author = {A. G. Ramm},
     title = {Attractors of {Strongly} {Dissipative} {Systems}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {25--31},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2009},
     doi = {10.4064/ba57-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba57-1-3/}
}
TY  - JOUR
AU  - A. G. Ramm
TI  - Attractors of Strongly Dissipative Systems
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2009
SP  - 25
EP  - 31
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba57-1-3/
DO  - 10.4064/ba57-1-3
LA  - en
ID  - 10_4064_ba57_1_3
ER  - 
%0 Journal Article
%A A. G. Ramm
%T Attractors of Strongly Dissipative Systems
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2009
%P 25-31
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba57-1-3/
%R 10.4064/ba57-1-3
%G en
%F 10_4064_ba57_1_3
A. G. Ramm. Attractors of Strongly Dissipative Systems. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 57 (2009) no. 1, pp. 25-31. doi : 10.4064/ba57-1-3. http://geodesic.mathdoc.fr/articles/10.4064/ba57-1-3/

Cité par Sources :