Attractors of Strongly Dissipative Systems
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 57 (2009) no. 1, pp. 25-31
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A class of infinite-dimensional dissipative dynamical systems is
defined for which there exists a unique
equilibrium point, and the rate of convergence to
this point of
the trajectories of a dynamical system from the above class
is exponential.
All the trajectories of the system converge
to this point as $t\to
+\infty$,
no matter what the initial conditions are.This class consists of strongly dissipative
systems. An example of such systems is provided by passive systems in network
theory (see, e.g., MR0601947 (83m:45002)).
Keywords:
class infinite dimensional dissipative dynamical systems defined which there exists unique equilibrium point rate convergence point trajectories dynamical system above class exponential trajectories system converge point infty matter what initial conditions class consists strongly dissipative systems example systems provided passive systems network theory see
Affiliations des auteurs :
A. G. Ramm 1
@article{10_4064_ba57_1_3,
author = {A. G. Ramm},
title = {Attractors of {Strongly} {Dissipative} {Systems}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {25--31},
publisher = {mathdoc},
volume = {57},
number = {1},
year = {2009},
doi = {10.4064/ba57-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba57-1-3/}
}
TY - JOUR AU - A. G. Ramm TI - Attractors of Strongly Dissipative Systems JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2009 SP - 25 EP - 31 VL - 57 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba57-1-3/ DO - 10.4064/ba57-1-3 LA - en ID - 10_4064_ba57_1_3 ER -
A. G. Ramm. Attractors of Strongly Dissipative Systems. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 57 (2009) no. 1, pp. 25-31. doi: 10.4064/ba57-1-3
Cité par Sources :