Limiting Behaviour of Dirichlet Forms for Stable
Processes on Metric Spaces
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) no. 3, pp. 257-299
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Supposing that the metric space in question supports a fractional
diffusion, we prove that after introducing an appropriate
multiplicative factor, the Gagliardo seminorms
$\|f\|_{W^{\sigma,2}}$ of a function $f\in L^2(E,\mu)$ have the
property
$$\eqalign{
\frac{1}{C} \, {\cal E} (f,f)\leq\liminf_{\sigma\nearrow 1}\,
(1-\sigma )\|f\|_{W^{\sigma,2}} \leq \limsup_{\sigma\nearrow 1}\,
(1-\sigma )\|f\|_{W^{\sigma,2}}\cr\leq C {\cal E} (f,f), }
$$
where ${\cal E}$ is the Dirichlet form relative to the fractional diffusion.
Keywords:
supposing metric space question supports fractional diffusion prove after introducing appropriate multiplicative factor gagliardo seminorms sigma function have property eqalign frac cal leq liminf sigma nearrow sigma sigma leq limsup sigma nearrow sigma sigma leq cal where cal dirichlet form relative fractional diffusion
Affiliations des auteurs :
Katarzyna Pietruska-Pałuba 1
@article{10_4064_ba56_3_8,
author = {Katarzyna Pietruska-Pa{\l}uba},
title = {Limiting {Behaviour} of {Dirichlet} {Forms} for {Stable
} {Processes} on {Metric} {Spaces}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {257--299},
publisher = {mathdoc},
volume = {56},
number = {3},
year = {2008},
doi = {10.4064/ba56-3-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba56-3-8/}
}
TY - JOUR AU - Katarzyna Pietruska-Pałuba TI - Limiting Behaviour of Dirichlet Forms for Stable Processes on Metric Spaces JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2008 SP - 257 EP - 299 VL - 56 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba56-3-8/ DO - 10.4064/ba56-3-8 LA - en ID - 10_4064_ba56_3_8 ER -
%0 Journal Article %A Katarzyna Pietruska-Pałuba %T Limiting Behaviour of Dirichlet Forms for Stable Processes on Metric Spaces %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2008 %P 257-299 %V 56 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ba56-3-8/ %R 10.4064/ba56-3-8 %G en %F 10_4064_ba56_3_8
Katarzyna Pietruska-Pałuba. Limiting Behaviour of Dirichlet Forms for Stable Processes on Metric Spaces. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) no. 3, pp. 257-299. doi: 10.4064/ba56-3-8
Cité par Sources :