On Maps which Preserve Equality of Distance in $F^{*}$-spaces
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) no. 3, pp. 225-230.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that every map $T$ between two $F^{*}$-spaces which preserves equality of distance and satisfies $T(0)=0$ is linear.
DOI : 10.4064/ba56-3-5
Keywords: prove every map between * spaces which preserves equality distance satisfies linear

Dongni Tan 1

1 School of Mathematical Sciences Nankai University Tianjin 300071, China
@article{10_4064_ba56_3_5,
     author = {Dongni Tan},
     title = {On {Maps} which {Preserve
} {Equality} of {Distance} in $F^{*}$-spaces},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {225--230},
     publisher = {mathdoc},
     volume = {56},
     number = {3},
     year = {2008},
     doi = {10.4064/ba56-3-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba56-3-5/}
}
TY  - JOUR
AU  - Dongni Tan
TI  - On Maps which Preserve
 Equality of Distance in $F^{*}$-spaces
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2008
SP  - 225
EP  - 230
VL  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba56-3-5/
DO  - 10.4064/ba56-3-5
LA  - en
ID  - 10_4064_ba56_3_5
ER  - 
%0 Journal Article
%A Dongni Tan
%T On Maps which Preserve
 Equality of Distance in $F^{*}$-spaces
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2008
%P 225-230
%V 56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba56-3-5/
%R 10.4064/ba56-3-5
%G en
%F 10_4064_ba56_3_5
Dongni Tan. On Maps which Preserve
 Equality of Distance in $F^{*}$-spaces. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) no. 3, pp. 225-230. doi : 10.4064/ba56-3-5. http://geodesic.mathdoc.fr/articles/10.4064/ba56-3-5/

Cité par Sources :