On Maps which Preserve
Equality of Distance in $F^{*}$-spaces
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) no. 3, pp. 225-230
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that every map $T$ between two $F^{*}$-spaces
which preserves equality of distance and satisfies $T(0)=0$
is linear.
Keywords:
prove every map between * spaces which preserves equality distance satisfies linear
Affiliations des auteurs :
Dongni Tan 1
@article{10_4064_ba56_3_5,
author = {Dongni Tan},
title = {On {Maps} which {Preserve
} {Equality} of {Distance} in $F^{*}$-spaces},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {225--230},
publisher = {mathdoc},
volume = {56},
number = {3},
year = {2008},
doi = {10.4064/ba56-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba56-3-5/}
}
TY - JOUR
AU - Dongni Tan
TI - On Maps which Preserve
Equality of Distance in $F^{*}$-spaces
JO - Bulletin of the Polish Academy of Sciences. Mathematics
PY - 2008
SP - 225
EP - 230
VL - 56
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/ba56-3-5/
DO - 10.4064/ba56-3-5
LA - en
ID - 10_4064_ba56_3_5
ER -
%0 Journal Article
%A Dongni Tan
%T On Maps which Preserve
Equality of Distance in $F^{*}$-spaces
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2008
%P 225-230
%V 56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba56-3-5/
%R 10.4064/ba56-3-5
%G en
%F 10_4064_ba56_3_5
Dongni Tan. On Maps which Preserve
Equality of Distance in $F^{*}$-spaces. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) no. 3, pp. 225-230. doi: 10.4064/ba56-3-5
Cité par Sources :