The Young Measure Representation for Weak Cluster Points of Sequences in $M$-spaces of Measurable Functions
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) no. 2, pp. 109-120.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\langle X, Y\rangle$ be a duality pair of $M$-spaces $X,Y$ of measurable functions from ${\mit\Omega}\subset\mathbb R^n$ into $\mathbb R^d$. The paper deals with $Y$-weak cluster points $\overline{\phi}$ of the sequence $\phi(\cdot,z_{j}(\cdot))$ in $X$, where $z_j\colon{\mit\Omega}\rightarrow\mathbb R^m$ is measurable for $j\in \mathbb{N}$ and $\phi\colon{\mit\Omega}\times\mathbb R^m\rightarrow\mathbb R^d$ is a Carathéodory function. We obtain general sufficient conditions, under which, for some negligible set $A_\phi$, the integral $I(\phi,\nu_x):=\int_{\mathbb R^m}\phi(x,\lambda)\,d\nu_x(\lambda)$ exists for $x\in{\mit\Omega}\setminus A_\phi$ and $\overline{\phi}(x)=I(\phi,\nu_x)$ on ${\mit\Omega}\setminus A_\phi$, where $\nu=\{\nu_x\}_{x\in{\mit\Omega}}$ is a measurable-dependent family of Radon probability measures on $\mathbb R^m$.
DOI : 10.4064/ba56-2-3
Keywords: langle rangle duality pair m spaces measurable functions mit omega subset mathbb mathbb paper deals y weak cluster points overline phi sequence phi cdot cdot where colon mit omega rightarrow mathbb measurable mathbb phi colon mit omega times mathbb rightarrow mathbb carath odory function obtain general sufficient conditions under which negligible set phi integral phi int mathbb phi lambda lambda exists mit omega setminus phi overline phi phi mit omega setminus phi where mit omega measurable dependent family radon probability measures mathbb

Hôǹg Thái Nguyêñ 1 ; Dariusz P/aczka 2

1 Institute of Mathematics Szczecin University Wielkopolska 15 70-451 Szczecin, Poland
2 Institute of Mathematics Szczecin University of Technology Al. Piastów 48 70-311 Szczecin, Poland
@article{10_4064_ba56_2_3,
     author = {H\^oǹg Th\'ai Nguy\^e\~n and Dariusz P/aczka},
     title = {The {Young} {Measure} {Representation} for {Weak} {Cluster} {Points
} of {Sequences} in $M$-spaces of {Measurable} {Functions}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {109--120},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {2008},
     doi = {10.4064/ba56-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba56-2-3/}
}
TY  - JOUR
AU  - Hôǹg Thái Nguyêñ
AU  - Dariusz P/aczka
TI  - The Young Measure Representation for Weak Cluster Points
 of Sequences in $M$-spaces of Measurable Functions
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2008
SP  - 109
EP  - 120
VL  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba56-2-3/
DO  - 10.4064/ba56-2-3
LA  - en
ID  - 10_4064_ba56_2_3
ER  - 
%0 Journal Article
%A Hôǹg Thái Nguyêñ
%A Dariusz P/aczka
%T The Young Measure Representation for Weak Cluster Points
 of Sequences in $M$-spaces of Measurable Functions
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2008
%P 109-120
%V 56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba56-2-3/
%R 10.4064/ba56-2-3
%G en
%F 10_4064_ba56_2_3
Hôǹg Thái Nguyêñ; Dariusz P/aczka. The Young Measure Representation for Weak Cluster Points
 of Sequences in $M$-spaces of Measurable Functions. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) no. 2, pp. 109-120. doi : 10.4064/ba56-2-3. http://geodesic.mathdoc.fr/articles/10.4064/ba56-2-3/

Cité par Sources :