A Note on Geometric Degree of Finite Extensions of Mappings from
a Smooth Variety
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) no. 2, pp. 105-108
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $f:V\rightarrow W$ be a finite polynomial mapping of algebraic subsets
$V,W$ of $\mathbf{k}^{n}$ and $\mathbf{k}^{m},$ respectively, with $n\leq m.$
Kwieciński [J. Pure Appl. Algebra 76 (1991)]
proved that there exists a finite polynomial mapping
$F:\mathbf{k}^{n}\rightarrow \mathbf{k}^{m}$ such that $F|_{V}=f.$ In this note
we prove that, if $V,W\subset \mathbf{k}^{n}$ are smooth of dimension $k$
with $3k+2\leq n,$ and $f:V\rightarrow W$ is finite, dominated and dominated
on every component, then there exists a finite polynomial mapping $F:
\mathbf{k}^{n}\rightarrow \mathbf{k}^{n}$ such that $F|_{V}=f$ and
$\mathop{\rm gdeg}F\leq (\mathop{\rm gdeg}f)^{k+1}.$ This improves earlier results
of the author.
Keywords:
rightarrow finite polynomial mapping algebraic subsets mathbf mathbf respectively leq kwieci ski pure appl algebra proved there exists finite polynomial mapping mathbf rightarrow mathbf note prove subset mathbf smooth dimension leq rightarrow finite dominated dominated every component there exists finite polynomial mapping mathbf rightarrow mathbf mathop gdeg leq mathop gdeg improves earlier results author
Affiliations des auteurs :
Marek Karaś  1
@article{10_4064_ba56_2_2,
author = {Marek Kara\'s},
title = {A {Note} on {Geometric} {Degree} of {Finite} {Extensions} of {Mappings} from
a {Smooth} {Variety}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {105--108},
year = {2008},
volume = {56},
number = {2},
doi = {10.4064/ba56-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba56-2-2/}
}
TY - JOUR AU - Marek Karaś TI - A Note on Geometric Degree of Finite Extensions of Mappings from a Smooth Variety JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2008 SP - 105 EP - 108 VL - 56 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/ba56-2-2/ DO - 10.4064/ba56-2-2 LA - en ID - 10_4064_ba56_2_2 ER -
%0 Journal Article %A Marek Karaś %T A Note on Geometric Degree of Finite Extensions of Mappings from a Smooth Variety %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2008 %P 105-108 %V 56 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/ba56-2-2/ %R 10.4064/ba56-2-2 %G en %F 10_4064_ba56_2_2
Marek Karaś. A Note on Geometric Degree of Finite Extensions of Mappings from a Smooth Variety. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) no. 2, pp. 105-108. doi: 10.4064/ba56-2-2
Cité par Sources :