A Note on Geometric Degree of Finite Extensions of Mappings from a Smooth Variety
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) no. 2, pp. 105-108.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $f:V\rightarrow W$ be a finite polynomial mapping of algebraic subsets $V,W$ of $\mathbf{k}^{n}$ and $\mathbf{k}^{m},$ respectively, with $n\leq m.$ Kwieciński [J. Pure Appl. Algebra 76 (1991)] proved that there exists a finite polynomial mapping $F:\mathbf{k}^{n}\rightarrow \mathbf{k}^{m}$ such that $F|_{V}=f.$ In this note we prove that, if $V,W\subset \mathbf{k}^{n}$ are smooth of dimension $k$ with $3k+2\leq n,$ and $f:V\rightarrow W$ is finite, dominated and dominated on every component, then there exists a finite polynomial mapping $F: \mathbf{k}^{n}\rightarrow \mathbf{k}^{n}$ such that $F|_{V}=f$ and $\mathop{\rm gdeg}F\leq (\mathop{\rm gdeg}f)^{k+1}.$ This improves earlier results of the author.
DOI : 10.4064/ba56-2-2
Keywords: rightarrow finite polynomial mapping algebraic subsets mathbf mathbf respectively leq kwieci ski pure appl algebra proved there exists finite polynomial mapping mathbf rightarrow mathbf note prove subset mathbf smooth dimension leq rightarrow finite dominated dominated every component there exists finite polynomial mapping mathbf rightarrow mathbf mathop gdeg leq mathop gdeg improves earlier results author

Marek Karaś 1

1 Instytut Matematyki Uniwersytet Jagielloński Reymonta 4 30-059 Kraków, Poland
@article{10_4064_ba56_2_2,
     author = {Marek Kara\'s},
     title = {A {Note} on {Geometric} {Degree} of {Finite} {Extensions} of {Mappings} from 
a {Smooth} {Variety}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {105--108},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {2008},
     doi = {10.4064/ba56-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba56-2-2/}
}
TY  - JOUR
AU  - Marek Karaś
TI  - A Note on Geometric Degree of Finite Extensions of Mappings from 
a Smooth Variety
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2008
SP  - 105
EP  - 108
VL  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba56-2-2/
DO  - 10.4064/ba56-2-2
LA  - en
ID  - 10_4064_ba56_2_2
ER  - 
%0 Journal Article
%A Marek Karaś
%T A Note on Geometric Degree of Finite Extensions of Mappings from 
a Smooth Variety
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2008
%P 105-108
%V 56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba56-2-2/
%R 10.4064/ba56-2-2
%G en
%F 10_4064_ba56_2_2
Marek Karaś. A Note on Geometric Degree of Finite Extensions of Mappings from 
a Smooth Variety. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) no. 2, pp. 105-108. doi : 10.4064/ba56-2-2. http://geodesic.mathdoc.fr/articles/10.4064/ba56-2-2/

Cité par Sources :