A Dichotomy Principle for Universal Series
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) no. 2, pp. 93-104.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Applying results of the infinitary Ramsey theory, namely the dichotomy principle of Galvin–Prikry, we show that for every sequence $(\alpha_{j})_{j=1}^{\infty}$ of scalars, there exists a subsequence $(\alpha_{k_j})_{j=1}^{\infty}$ such that either every subsequence of $(\alpha_{k_j})_{j=1}^{\infty}$ defines a universal series, or no subsequence of $(\alpha_{k_j})_{j=1}^{\infty}$ defines a universal series. In particular examples we decide which of the two cases holds.
DOI : 10.4064/ba56-2-1
Keywords: applying results infinitary ramsey theory namely dichotomy principle galvin prikry every sequence alpha infty scalars there exists subsequence alpha infty either every subsequence alpha infty defines universal series subsequence alpha infty defines universal series particular examples decide which cases holds

V. Farmaki 1 ; V. Nestoridis 2

1 Department of Mathematics Athens University Panepistemiopolis 15784 Athens, Greece
2 Department of Mathematics Athens University Panepistemiopolis 15784 Athens, Greece and Department of Mathematics and Statistics University of Cyprus 1678 Nicosia, Cyprus
@article{10_4064_ba56_2_1,
     author = {V. Farmaki and V. Nestoridis},
     title = {A {Dichotomy} {Principle} for {Universal} {Series}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {93--104},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {2008},
     doi = {10.4064/ba56-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba56-2-1/}
}
TY  - JOUR
AU  - V. Farmaki
AU  - V. Nestoridis
TI  - A Dichotomy Principle for Universal Series
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2008
SP  - 93
EP  - 104
VL  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba56-2-1/
DO  - 10.4064/ba56-2-1
LA  - en
ID  - 10_4064_ba56_2_1
ER  - 
%0 Journal Article
%A V. Farmaki
%A V. Nestoridis
%T A Dichotomy Principle for Universal Series
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2008
%P 93-104
%V 56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba56-2-1/
%R 10.4064/ba56-2-1
%G en
%F 10_4064_ba56_2_1
V. Farmaki; V. Nestoridis. A Dichotomy Principle for Universal Series. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) no. 2, pp. 93-104. doi : 10.4064/ba56-2-1. http://geodesic.mathdoc.fr/articles/10.4064/ba56-2-1/

Cité par Sources :