A Dichotomy Principle for Universal Series
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) no. 2, pp. 93-104
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Applying results of the infinitary Ramsey theory, namely the
dichotomy principle of Galvin–Prikry, we show that for every sequence $(\alpha_{j})_{j=1}^{\infty}$ of scalars, there exists a subsequence $(\alpha_{k_j})_{j=1}^{\infty}$ such that either every subsequence of $(\alpha_{k_j})_{j=1}^{\infty}$ defines a universal series, or no subsequence of $(\alpha_{k_j})_{j=1}^{\infty}$ defines a universal series. In particular examples we decide which of the two cases holds.
Keywords:
applying results infinitary ramsey theory namely dichotomy principle galvin prikry every sequence alpha infty scalars there exists subsequence alpha infty either every subsequence alpha infty defines universal series subsequence alpha infty defines universal series particular examples decide which cases holds
Affiliations des auteurs :
V. Farmaki 1 ; V. Nestoridis 2
@article{10_4064_ba56_2_1,
author = {V. Farmaki and V. Nestoridis},
title = {A {Dichotomy} {Principle} for {Universal} {Series}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {93--104},
publisher = {mathdoc},
volume = {56},
number = {2},
year = {2008},
doi = {10.4064/ba56-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba56-2-1/}
}
TY - JOUR AU - V. Farmaki AU - V. Nestoridis TI - A Dichotomy Principle for Universal Series JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2008 SP - 93 EP - 104 VL - 56 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba56-2-1/ DO - 10.4064/ba56-2-1 LA - en ID - 10_4064_ba56_2_1 ER -
V. Farmaki; V. Nestoridis. A Dichotomy Principle for Universal Series. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) no. 2, pp. 93-104. doi: 10.4064/ba56-2-1
Cité par Sources :