Open Subsets of LF-spaces
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) no. 1, pp. 25-37
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $F = \mathop{\rm ind\,lim} F_n$ be an infinite-dimensional LF-space
with density $\mathop{\rm dens} F = \tau$ ($\geq \aleph_0$)
such that some $F_n$ is infinite-dimensional and $\mathop{\rm dens} F_n = \tau$.
It is proved that every open subset of $F$ is homeomorphic to
the product of an $\ell_2(\tau)$-manifold and $\mathbb R^\infty = \mathop{\rm ind\,lim} \mathbb R^n$
(hence the product of an open subset of $\ell_2(\tau)$ and $\mathbb R^\infty$).
As a consequence, any two open sets in $F$ are homeomorphic
if they have the same homotopy type.
Keywords:
mathop ind lim infinite dimensional lf space density mathop dens tau geq aleph infinite dimensional mathop dens tau proved every subset homeomorphic product ell tau manifold mathbb infty mathop ind lim mathbb hence product subset ell tau mathbb infty consequence sets homeomorphic have homotopy type
Affiliations des auteurs :
Kotaro Mine 1 ; Katsuro Sakai 1
@article{10_4064_ba56_1_4,
author = {Kotaro Mine and Katsuro Sakai},
title = {Open {Subsets} of {LF-spaces}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {25--37},
publisher = {mathdoc},
volume = {56},
number = {1},
year = {2008},
doi = {10.4064/ba56-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba56-1-4/}
}
TY - JOUR AU - Kotaro Mine AU - Katsuro Sakai TI - Open Subsets of LF-spaces JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2008 SP - 25 EP - 37 VL - 56 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba56-1-4/ DO - 10.4064/ba56-1-4 LA - en ID - 10_4064_ba56_1_4 ER -
Kotaro Mine; Katsuro Sakai. Open Subsets of LF-spaces. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) no. 1, pp. 25-37. doi: 10.4064/ba56-1-4
Cité par Sources :