Group Structures and Rectifiability in Powers of Spaces
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 55 (2007) no. 4, pp. 357-363
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that if some power of a space $X$ is rectifiable, then $X^{\pi w(X)}$ is rectifiable. It follows that no power of the Sorgenfrey line is a topological group and this answers a question of
Arhangel'skiĭ. We also show that in Mal'tsev spaces of point-countable type, character and $\pi$-character coincide.
Keywords:
prove power space rectifiable rectifiable follows power sorgenfrey line topological group answers question arhangelski maltsev spaces point countable type character pi character coincide
Affiliations des auteurs :
G. J. Ridderbos 1
@article{10_4064_ba55_4_7,
author = {G. J. Ridderbos},
title = {Group {Structures} and {Rectifiability} in {Powers} of {Spaces}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {357--363},
publisher = {mathdoc},
volume = {55},
number = {4},
year = {2007},
doi = {10.4064/ba55-4-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba55-4-7/}
}
TY - JOUR AU - G. J. Ridderbos TI - Group Structures and Rectifiability in Powers of Spaces JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2007 SP - 357 EP - 363 VL - 55 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba55-4-7/ DO - 10.4064/ba55-4-7 LA - en ID - 10_4064_ba55_4_7 ER -
G. J. Ridderbos. Group Structures and Rectifiability in Powers of Spaces. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 55 (2007) no. 4, pp. 357-363. doi: 10.4064/ba55-4-7
Cité par Sources :