Inverse Sequences and Absolute Co-Extensors
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 55 (2007) no. 3, pp. 243-259
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Suppose that $K$ is a CW-complex,
$\mathbf{X}$ is an inverse sequence of stratifiable spaces, and
$X=\lim\mathbf{X}$. Using the concept of semi-sequence, we
provide a necessary and sufficient condition for $X$ to be an
absolute co-extensor for $K$ in terms of the inverse sequence
$\mathbf{X}$ and without recourse to any specific properties of
its limit. To say that $X$ is an absolute co-extensor for $K$ is
the same as saying that $K$ is an absolute extensor for $X$, i.e.,
that each map $f:A\to K$ from a closed subset $A$ of $X$ extends
to a map $F:X\to K$. In case $K$ is a polyhedron $|K|_{\rm CW}$ (the
set $|K|$ with the weak topology $\rm CW$), we determine a
similar characterization that takes into account the simplicial
structure of $K$.
Keywords:
suppose cw complex mathbf inverse sequence stratifiable spaces lim mathbf using concept semi sequence provide necessary sufficient condition absolute co extensor terms inverse sequence mathbf without recourse specific properties its limit say absolute co extensor saying absolute extensor each map closed subset extends map polyhedron set weak topology determine similar characterization takes account simplicial structure
Affiliations des auteurs :
Ivan Ivanšić 1 ; Leonard R. Rubin 2
@article{10_4064_ba55_3_6,
author = {Ivan Ivan\v{s}i\'c and Leonard R. Rubin},
title = {Inverse {Sequences} and {Absolute} {Co-Extensors}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {243--259},
publisher = {mathdoc},
volume = {55},
number = {3},
year = {2007},
doi = {10.4064/ba55-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba55-3-6/}
}
TY - JOUR AU - Ivan Ivanšić AU - Leonard R. Rubin TI - Inverse Sequences and Absolute Co-Extensors JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2007 SP - 243 EP - 259 VL - 55 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba55-3-6/ DO - 10.4064/ba55-3-6 LA - en ID - 10_4064_ba55_3_6 ER -
%0 Journal Article %A Ivan Ivanšić %A Leonard R. Rubin %T Inverse Sequences and Absolute Co-Extensors %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2007 %P 243-259 %V 55 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ba55-3-6/ %R 10.4064/ba55-3-6 %G en %F 10_4064_ba55_3_6
Ivan Ivanšić; Leonard R. Rubin. Inverse Sequences and Absolute Co-Extensors. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 55 (2007) no. 3, pp. 243-259. doi: 10.4064/ba55-3-6
Cité par Sources :