Infinite Iterated Function Systems Depending
on a Parameter
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 55 (2007) no. 2, pp. 105-122
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
This paper is motivated by the
problem of dependence of the Hausdorff dimension
of the Julia–Lavaurs sets $J_{0,\sigma}$
for the map $f_0(z)=z^2+1/4$ on
the parameter~$\sigma$. Using homographies, we imitate the construction of
the iterated function system (IFS)
whose limit set is a subset of $J_{0,\sigma}$, given
by Urbański and Zinsmeister. The closure of the limit set of our
IFS $\{\phi^{n,k}_{\sigma,\alpha}\}$ is the closure of some
family of circles, and if the parameter $\sigma$ varies, then the
behavior of the limit set is similar to the behavior of $J_{0,\sigma}$.
The parameter $\alpha$ determines the diameter of the largest circle,
and therefore the diameters of other circles.
We prove that for all parameters $\alpha$ except possibly for a set
without accumulation points, for all appropriate $t>1$ the sum of the $t$th
powers of the diameters of the images of the largest
circle under the maps of the IFS depends on the parameter $\sigma$.
This is the first step to verifying the conjectured dependence of
the pressure and
Hausdorff dimension on $\sigma$ for our model and for $J_{0,\sigma}$.
Keywords:
paper motivated problem dependence hausdorff dimension julia lavaurs sets sigma map parameter sigma using homographies imitate construction iterated function system ifs whose limit set subset sigma given urba ski zinsmeister closure limit set ifs phi sigma alpha closure family circles parameter sigma varies behavior limit set similar behavior sigma parameter alpha determines diameter largest circle therefore diameters other circles prove parameters alpha except possibly set without accumulation points appropriate sum tth powers diameters images largest circle under maps ifs depends parameter sigma first step verifying conjectured dependence pressure hausdorff dimension sigma model sigma
Affiliations des auteurs :
Ludwik Jaksztas 1
@article{10_4064_ba55_2_2,
author = {Ludwik Jaksztas},
title = {Infinite {Iterated} {Function} {Systems} {Depending
on} a {Parameter}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {105--122},
publisher = {mathdoc},
volume = {55},
number = {2},
year = {2007},
doi = {10.4064/ba55-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba55-2-2/}
}
TY - JOUR AU - Ludwik Jaksztas TI - Infinite Iterated Function Systems Depending on a Parameter JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2007 SP - 105 EP - 122 VL - 55 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba55-2-2/ DO - 10.4064/ba55-2-2 LA - en ID - 10_4064_ba55_2_2 ER -
%0 Journal Article %A Ludwik Jaksztas %T Infinite Iterated Function Systems Depending on a Parameter %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2007 %P 105-122 %V 55 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ba55-2-2/ %R 10.4064/ba55-2-2 %G en %F 10_4064_ba55_2_2
Ludwik Jaksztas. Infinite Iterated Function Systems Depending on a Parameter. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 55 (2007) no. 2, pp. 105-122. doi: 10.4064/ba55-2-2
Cité par Sources :