A Proof of Simultaneous Linearization with a Polylog Estimate
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 55 (2007) no. 1, pp. 43-52
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We give an alternative proof of simultaneous linearization recently shown
by T. Ueda, which connects the Schröder equation and the Abel equation
analytically. In fact, we generalize Ueda's original result so that
we may apply it to the parabolic fixed points with multiple petals.
As an application, we show a continuity result on linearizing
coordinates in complex dynamics.
Keywords:
alternative proof simultaneous linearization recently shown ueda which connects schr der equation abel equation analytically generalize uedas original result may apply parabolic fixed points multiple petals application continuity result linearizing coordinates complex dynamics
Affiliations des auteurs :
Tomoki Kawahira 1
@article{10_4064_ba55_1_5,
author = {Tomoki Kawahira},
title = {A {Proof} of {Simultaneous} {Linearization} with a {Polylog} {Estimate}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {43--52},
publisher = {mathdoc},
volume = {55},
number = {1},
year = {2007},
doi = {10.4064/ba55-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba55-1-5/}
}
TY - JOUR AU - Tomoki Kawahira TI - A Proof of Simultaneous Linearization with a Polylog Estimate JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2007 SP - 43 EP - 52 VL - 55 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba55-1-5/ DO - 10.4064/ba55-1-5 LA - en ID - 10_4064_ba55_1_5 ER -
%0 Journal Article %A Tomoki Kawahira %T A Proof of Simultaneous Linearization with a Polylog Estimate %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2007 %P 43-52 %V 55 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ba55-1-5/ %R 10.4064/ba55-1-5 %G en %F 10_4064_ba55_1_5
Tomoki Kawahira. A Proof of Simultaneous Linearization with a Polylog Estimate. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 55 (2007) no. 1, pp. 43-52. doi: 10.4064/ba55-1-5
Cité par Sources :