Fibonacci Numbers with the Lehmer Property
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 55 (2007) no. 1, pp. 7-15.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that if $m>1$ is a Fibonacci number such that $\phi(m) \,|\, m-1$, where $\phi$ is the Euler function, then $m$ is prime
DOI : 10.4064/ba55-1-2
Keywords: fibonacci number phi m where phi euler function prime

Florian Luca 1

1 Instituto de Matemáticas Universidad Nacional Autónoma de México Ap. Postal 61-3 (Xangari) C.P. 58089, Morelia, Michoacán, México
@article{10_4064_ba55_1_2,
     author = {Florian Luca},
     title = {Fibonacci {Numbers} with the {Lehmer} {Property}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {7--15},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {2007},
     doi = {10.4064/ba55-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba55-1-2/}
}
TY  - JOUR
AU  - Florian Luca
TI  - Fibonacci Numbers with the Lehmer Property
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2007
SP  - 7
EP  - 15
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba55-1-2/
DO  - 10.4064/ba55-1-2
LA  - en
ID  - 10_4064_ba55_1_2
ER  - 
%0 Journal Article
%A Florian Luca
%T Fibonacci Numbers with the Lehmer Property
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2007
%P 7-15
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba55-1-2/
%R 10.4064/ba55-1-2
%G en
%F 10_4064_ba55_1_2
Florian Luca. Fibonacci Numbers with the Lehmer Property. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 55 (2007) no. 1, pp. 7-15. doi : 10.4064/ba55-1-2. http://geodesic.mathdoc.fr/articles/10.4064/ba55-1-2/

Cité par Sources :