Primitive Points on a Modular Hyperbola
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 54 (2006) no. 3, pp. 193-200.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For positive integers $m$, $U$ and $V$, we obtain an asymptotic formula for the number of integer points $(u,v) \in [1, U]\times [1,V]$ which belong to the modular hyperbola $uv \equiv 1 \pmod m$ and also have $\gcd(u, v) =1$, which are also known as primitive points. Such points have a nice geometric interpretation as points on the modular hyperbola which are “visible” from the origin.
DOI : 10.4064/ba54-3-1
Keywords: positive integers obtain asymptotic formula number integer points times which belong modular hyperbola equiv pmod have gcd which known primitive points points have nice geometric interpretation points modular hyperbola which visible origin

Igor E. Shparlinski 1

1 Department of Computing Macquarie University Sydney, NSW 2109, Australia
@article{10_4064_ba54_3_1,
     author = {Igor E. Shparlinski},
     title = {Primitive {Points} on a {Modular} {Hyperbola}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {193--200},
     publisher = {mathdoc},
     volume = {54},
     number = {3},
     year = {2006},
     doi = {10.4064/ba54-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba54-3-1/}
}
TY  - JOUR
AU  - Igor E. Shparlinski
TI  - Primitive Points on a Modular Hyperbola
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2006
SP  - 193
EP  - 200
VL  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba54-3-1/
DO  - 10.4064/ba54-3-1
LA  - en
ID  - 10_4064_ba54_3_1
ER  - 
%0 Journal Article
%A Igor E. Shparlinski
%T Primitive Points on a Modular Hyperbola
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2006
%P 193-200
%V 54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba54-3-1/
%R 10.4064/ba54-3-1
%G en
%F 10_4064_ba54_3_1
Igor E. Shparlinski. Primitive Points on a Modular Hyperbola. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 54 (2006) no. 3, pp. 193-200. doi : 10.4064/ba54-3-1. http://geodesic.mathdoc.fr/articles/10.4064/ba54-3-1/

Cité par Sources :