Krasinkiewicz Maps from Compacta to Polyhedra
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 54 (2006) no. 2, pp. 137-146
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that the set of all Krasinkiewicz maps from a compact
metric space
to a polyhedron (or a 1-dimensional locally connected continuum, or an
$n$-dimensional Menger manifold, $n \ge 1$)
is a dense $G_\delta$-subset
of the space of all maps. We also investigate
the existence of surjective Krasinkiewicz maps from continua to polyhedra.
Keywords:
prove set krasinkiewicz maps compact metric space polyhedron dimensional locally connected continuum n dimensional menger manifold dense delta subset space maps investigate existence surjective krasinkiewicz maps continua polyhedra
Affiliations des auteurs :
Eiichi Matsuhashi 1
@article{10_4064_ba54_2_5,
author = {Eiichi Matsuhashi},
title = {Krasinkiewicz {Maps} from {Compacta} to {Polyhedra}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {137--146},
publisher = {mathdoc},
volume = {54},
number = {2},
year = {2006},
doi = {10.4064/ba54-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba54-2-5/}
}
TY - JOUR AU - Eiichi Matsuhashi TI - Krasinkiewicz Maps from Compacta to Polyhedra JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2006 SP - 137 EP - 146 VL - 54 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba54-2-5/ DO - 10.4064/ba54-2-5 LA - en ID - 10_4064_ba54_2_5 ER -
Eiichi Matsuhashi. Krasinkiewicz Maps from Compacta to Polyhedra. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 54 (2006) no. 2, pp. 137-146. doi: 10.4064/ba54-2-5
Cité par Sources :