Krasinkiewicz Maps from Compacta to Polyhedra
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 54 (2006) no. 2, pp. 137-146.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that the set of all Krasinkiewicz maps from a compact metric space to a polyhedron (or a 1-dimensional locally connected continuum, or an $n$-dimensional Menger manifold, $n \ge 1$) is a dense $G_\delta$-subset of the space of all maps. We also investigate the existence of surjective Krasinkiewicz maps from continua to polyhedra.
DOI : 10.4064/ba54-2-5
Keywords: prove set krasinkiewicz maps compact metric space polyhedron dimensional locally connected continuum n dimensional menger manifold dense delta subset space maps investigate existence surjective krasinkiewicz maps continua polyhedra

Eiichi Matsuhashi 1

1 Institute of Mathematics University of Tsukuba Ibaraki, 305-8571 Japan
@article{10_4064_ba54_2_5,
     author = {Eiichi Matsuhashi},
     title = {Krasinkiewicz {Maps} from {Compacta} to {Polyhedra}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {137--146},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {2006},
     doi = {10.4064/ba54-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba54-2-5/}
}
TY  - JOUR
AU  - Eiichi Matsuhashi
TI  - Krasinkiewicz Maps from Compacta to Polyhedra
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2006
SP  - 137
EP  - 146
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba54-2-5/
DO  - 10.4064/ba54-2-5
LA  - en
ID  - 10_4064_ba54_2_5
ER  - 
%0 Journal Article
%A Eiichi Matsuhashi
%T Krasinkiewicz Maps from Compacta to Polyhedra
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2006
%P 137-146
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba54-2-5/
%R 10.4064/ba54-2-5
%G en
%F 10_4064_ba54_2_5
Eiichi Matsuhashi. Krasinkiewicz Maps from Compacta to Polyhedra. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 54 (2006) no. 2, pp. 137-146. doi : 10.4064/ba54-2-5. http://geodesic.mathdoc.fr/articles/10.4064/ba54-2-5/

Cité par Sources :