Schroeder–Bernstein Quintuples for Banach Spaces
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 54 (2006) no. 2, pp. 113-124.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X$ and $Y$ be two Banach spaces, each isomorphic to a complemented subspace of the other. In 1996, W. T. Gowers solved the Schroeder–Bernstein Problem for Banach spaces by showing that $X$ is not necessarily isomorphic to $Y$. In this paper, we obtain necessary and sufficient conditions on the quintuples $(p, q, r, s, t)$ in ${\mathbb N}$ for $X$ to be isomorphic to $Y$ whenever $$ \cases{ X \sim X^p \oplus Y^q, \cr Y^t \sim X^r \oplus Y^{s}. }$$ Such quintuples are called Schroeder–Bernstein quintuples for Banach spaces and they yield a unification of the known decomposition methods in Banach spaces involving finite sums of $X$ and $Y$, similar to Pe/lczyński's decomposition method. Inspired by this result, we also introduce the notion of Schroeder–Bernstein sextuples for Banach spaces and pose a conjecture which would complete their characterization.
DOI : 10.4064/ba54-2-3
Keywords: banach spaces each isomorphic complemented subspace other gowers solved schroeder bernstein problem banach spaces showing necessarily isomorphic paper obtain necessary sufficient conditions quintuples mathbb isomorphic whenever cases sim oplus sim oplus quintuples called schroeder bernstein quintuples banach spaces yield unification known decomposition methods banach spaces involving finite sums similar lczy skis decomposition method inspired result introduce notion schroeder bernstein sextuples banach spaces pose conjecture which would complete their characterization

Elói Medina Galego 1

1 Department of Mathematics – IME University of São Paulo São Paulo 05315-970, Brazil
@article{10_4064_ba54_2_3,
     author = {El\'oi Medina Galego},
     title = {Schroeder{\textendash}Bernstein {Quintuples} for {Banach} {Spaces}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {113--124},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {2006},
     doi = {10.4064/ba54-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba54-2-3/}
}
TY  - JOUR
AU  - Elói Medina Galego
TI  - Schroeder–Bernstein Quintuples for Banach Spaces
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2006
SP  - 113
EP  - 124
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba54-2-3/
DO  - 10.4064/ba54-2-3
LA  - en
ID  - 10_4064_ba54_2_3
ER  - 
%0 Journal Article
%A Elói Medina Galego
%T Schroeder–Bernstein Quintuples for Banach Spaces
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2006
%P 113-124
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba54-2-3/
%R 10.4064/ba54-2-3
%G en
%F 10_4064_ba54_2_3
Elói Medina Galego. Schroeder–Bernstein Quintuples for Banach Spaces. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 54 (2006) no. 2, pp. 113-124. doi : 10.4064/ba54-2-3. http://geodesic.mathdoc.fr/articles/10.4064/ba54-2-3/

Cité par Sources :