Isomorphisms of Cartesian Products of $\ell $-Power Series Spaces
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 54 (2006) no. 2, pp. 103-111.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\ell$ be a Banach sequence space with a monotone norm $\Vert \cdot \Vert_{\ell}$, in which the canonical system $(e_i)$ is a normalized symmetric basis. We give a complete isomorphic classification of Cartesian products $E^{\ell}_0(a)\times E^{\ell}_{\infty}(b) $ where $E^{\ell}_0(a) = K^{\ell}(\exp (-{p}^{-1} a_i))$ and $E^{\ell}_{\infty}(b) = K^{\ell}(\exp ({p} a_i))$ are finite and infinite $\ell$-power series spaces, respectively. This classification is the generalization of the results by Chalov et al. [Studia Math. 137 (1999)] and Djakov et al. [Michigan Math. J. 43 (1996)] by using the method of compound linear topological invariants developed by the third author.
DOI : 10.4064/ba54-2-2
Keywords: ell banach sequence space monotone norm vert cdot vert ell which canonical system normalized symmetric basis complete isomorphic classification cartesian products ell times ell infty where ell ell exp ell infty ell exp finite infinite ell power series spaces respectively classification generalization results chalov studia math djakov michigan math using method compound linear topological invariants developed third author

E. Karapınar 1 ; M. Yurdakul 2 ; V. Zahariuta 3

1 Izmir University of Economics Izmir, Turkey
2 Department of Mathematics Middle East Technical University 06531, Ankara, Turkey
3 FENS Sabancı University Istanbul, Turkey
@article{10_4064_ba54_2_2,
     author = {E. Karap{\i}nar and M. Yurdakul and V. Zahariuta},
     title = {Isomorphisms of {Cartesian} {Products} of $\ell ${-Power} {Series} {Spaces}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {103--111},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {2006},
     doi = {10.4064/ba54-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba54-2-2/}
}
TY  - JOUR
AU  - E. Karapınar
AU  - M. Yurdakul
AU  - V. Zahariuta
TI  - Isomorphisms of Cartesian Products of $\ell $-Power Series Spaces
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2006
SP  - 103
EP  - 111
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba54-2-2/
DO  - 10.4064/ba54-2-2
LA  - en
ID  - 10_4064_ba54_2_2
ER  - 
%0 Journal Article
%A E. Karapınar
%A M. Yurdakul
%A V. Zahariuta
%T Isomorphisms of Cartesian Products of $\ell $-Power Series Spaces
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2006
%P 103-111
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba54-2-2/
%R 10.4064/ba54-2-2
%G en
%F 10_4064_ba54_2_2
E. Karapınar; M. Yurdakul; V. Zahariuta. Isomorphisms of Cartesian Products of $\ell $-Power Series Spaces. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 54 (2006) no. 2, pp. 103-111. doi : 10.4064/ba54-2-2. http://geodesic.mathdoc.fr/articles/10.4064/ba54-2-2/

Cité par Sources :