Isomorphisms of Cartesian Products of $\ell $-Power Series Spaces
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 54 (2006) no. 2, pp. 103-111
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\ell$ be a Banach sequence space with a monotone norm $\Vert \cdot
\Vert_{\ell}$, in which the canonical system $(e_i)$ is a normalized
symmetric basis. We give a complete isomorphic classification of Cartesian
products $E^{\ell}_0(a)\times E^{\ell}_{\infty}(b) $ where $E^{\ell}_0(a) =
K^{\ell}(\exp (-{p}^{-1} a_i))$ and $E^{\ell}_{\infty}(b) = K^{\ell}(\exp
({p} a_i))$ are finite and infinite $\ell$-power series spaces,
respectively. This classification is the generalization of the results
by Chalov et al. [Studia Math. 137 (1999)]
and
Djakov et al. [Michigan Math. J. 43 (1996)]
by using the method of compound linear topological
invariants developed by the third author.
Keywords:
ell banach sequence space monotone norm vert cdot vert ell which canonical system normalized symmetric basis complete isomorphic classification cartesian products ell times ell infty where ell ell exp ell infty ell exp finite infinite ell power series spaces respectively classification generalization results chalov studia math djakov michigan math using method compound linear topological invariants developed third author
Affiliations des auteurs :
E. Karapınar 1 ; M. Yurdakul 2 ; V. Zahariuta 3
@article{10_4064_ba54_2_2,
author = {E. Karap{\i}nar and M. Yurdakul and V. Zahariuta},
title = {Isomorphisms of {Cartesian} {Products} of $\ell ${-Power} {Series} {Spaces}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {103--111},
publisher = {mathdoc},
volume = {54},
number = {2},
year = {2006},
doi = {10.4064/ba54-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba54-2-2/}
}
TY - JOUR AU - E. Karapınar AU - M. Yurdakul AU - V. Zahariuta TI - Isomorphisms of Cartesian Products of $\ell $-Power Series Spaces JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2006 SP - 103 EP - 111 VL - 54 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba54-2-2/ DO - 10.4064/ba54-2-2 LA - en ID - 10_4064_ba54_2_2 ER -
%0 Journal Article %A E. Karapınar %A M. Yurdakul %A V. Zahariuta %T Isomorphisms of Cartesian Products of $\ell $-Power Series Spaces %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2006 %P 103-111 %V 54 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ba54-2-2/ %R 10.4064/ba54-2-2 %G en %F 10_4064_ba54_2_2
E. Karapınar; M. Yurdakul; V. Zahariuta. Isomorphisms of Cartesian Products of $\ell $-Power Series Spaces. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 54 (2006) no. 2, pp. 103-111. doi: 10.4064/ba54-2-2
Cité par Sources :