On Weakly Measurable Functions
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 53 (2005) no. 4, pp. 421-428.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that if $T$ is an uncountable Polish space, $\mathcal{X}$ is a metrizable space and $f:T\rightarrow\mathcal{X}$ is a weakly Baire measurable function, then we can find a meagre set $M\subseteq T$ such that $f[T\setminus M]$ is a separable space. We also give an example showing that “metrizable” cannot be replaced by “normal”.
DOI : 10.4064/ba53-4-7
Keywords: uncountable polish space mathcal metrizable space rightarrow mathcal weakly baire measurable function meagre set subseteq setminus separable space example showing metrizable cannot replaced normal

Szymon Żeberski 1

1 Institute of Mathematics University of Wroc/law Pl. Grunwaldzki 2/4 50-384 Wroc/law, Poland
@article{10_4064_ba53_4_7,
     author = {Szymon \.Zeberski},
     title = {On {Weakly} {Measurable} {Functions}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {421--428},
     publisher = {mathdoc},
     volume = {53},
     number = {4},
     year = {2005},
     doi = {10.4064/ba53-4-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba53-4-7/}
}
TY  - JOUR
AU  - Szymon Żeberski
TI  - On Weakly Measurable Functions
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2005
SP  - 421
EP  - 428
VL  - 53
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba53-4-7/
DO  - 10.4064/ba53-4-7
LA  - en
ID  - 10_4064_ba53_4_7
ER  - 
%0 Journal Article
%A Szymon Żeberski
%T On Weakly Measurable Functions
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2005
%P 421-428
%V 53
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba53-4-7/
%R 10.4064/ba53-4-7
%G en
%F 10_4064_ba53_4_7
Szymon Żeberski. On Weakly Measurable Functions. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 53 (2005) no. 4, pp. 421-428. doi : 10.4064/ba53-4-7. http://geodesic.mathdoc.fr/articles/10.4064/ba53-4-7/

Cité par Sources :