Hyperspaces of Finite Sets in Universal Spaces
for Absolute Borel Classes
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 53 (2005) no. 4, pp. 409-419
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
By $\mathop{\rm Fin}(X)$ (resp. $\mathop{\rm Fin}^k(X)$),
we denote the hyperspace of all non-empty finite subsets of $X$
(resp. consisting of at most $k$ points)
with the Vietoris topology.
Let $\ell_2(\tau)$ be the Hilbert space with weight $\tau$
and $\ell_2^{\rm f}(\tau)$ the linear span of
the canonical orthonormal basis of $\ell_2(\tau)$.
It is shown that if $E = \ell_2^{\rm f}(\tau)$ or
$E$ is an absorbing set in $\ell_2(\tau)$ for one of
the absolute Borel classes ${\mathfrak a}_\alpha(\tau)$
and ${\mathfrak M}_\alpha(\tau)$ of weight $\leq \tau$ ($\alpha > 0$)
then $\mathop{\rm Fin}(E)$ and each $\mathop{\rm Fin}^k(E)$ are homeomorphic to $E$.
More generally,
if $X$ is a connected $E$-manifold then $\mathop{\rm Fin}(X)$ is homeomorphic to $E$
and each $\mathop{\rm Fin}^k(X)$ is a connected $E$-manifold.
Keywords:
mathop fin resp mathop fin denote hyperspace non empty finite subsets resp consisting points vietoris topology ell tau hilbert space weight tau ell tau linear span canonical orthonormal basis ell tau shown ell tau absorbing set ell tau absolute borel classes mathfrak alpha tau mathfrak alpha tau weight leq tau alpha mathop fin each mathop fin homeomorphic generally connected e manifold mathop fin homeomorphic each mathop fin connected e manifold
Affiliations des auteurs :
Kotaro Mine 1 ; Katsuro Sakai 1 ; Masato Yaguchi 1
@article{10_4064_ba53_4_6,
author = {Kotaro Mine and Katsuro Sakai and Masato Yaguchi},
title = {Hyperspaces of {Finite} {Sets} in {Universal} {Spaces
} for {Absolute} {Borel} {Classes}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {409--419},
publisher = {mathdoc},
volume = {53},
number = {4},
year = {2005},
doi = {10.4064/ba53-4-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba53-4-6/}
}
TY - JOUR AU - Kotaro Mine AU - Katsuro Sakai AU - Masato Yaguchi TI - Hyperspaces of Finite Sets in Universal Spaces for Absolute Borel Classes JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2005 SP - 409 EP - 419 VL - 53 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba53-4-6/ DO - 10.4064/ba53-4-6 LA - en ID - 10_4064_ba53_4_6 ER -
%0 Journal Article %A Kotaro Mine %A Katsuro Sakai %A Masato Yaguchi %T Hyperspaces of Finite Sets in Universal Spaces for Absolute Borel Classes %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2005 %P 409-419 %V 53 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ba53-4-6/ %R 10.4064/ba53-4-6 %G en %F 10_4064_ba53_4_6
Kotaro Mine; Katsuro Sakai; Masato Yaguchi. Hyperspaces of Finite Sets in Universal Spaces for Absolute Borel Classes. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 53 (2005) no. 4, pp. 409-419. doi: 10.4064/ba53-4-6
Cité par Sources :