Hyperspaces of Finite Sets in Universal Spaces for Absolute Borel Classes
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 53 (2005) no. 4, pp. 409-419.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

By $\mathop{\rm Fin}(X)$ (resp. $\mathop{\rm Fin}^k(X)$), we denote the hyperspace of all non-empty finite subsets of $X$ (resp. consisting of at most $k$ points) with the Vietoris topology. Let $\ell_2(\tau)$ be the Hilbert space with weight $\tau$ and $\ell_2^{\rm f}(\tau)$ the linear span of the canonical orthonormal basis of $\ell_2(\tau)$. It is shown that if $E = \ell_2^{\rm f}(\tau)$ or $E$ is an absorbing set in $\ell_2(\tau)$ for one of the absolute Borel classes ${\mathfrak a}_\alpha(\tau)$ and ${\mathfrak M}_\alpha(\tau)$ of weight $\leq \tau$ ($\alpha > 0$) then $\mathop{\rm Fin}(E)$ and each $\mathop{\rm Fin}^k(E)$ are homeomorphic to $E$. More generally, if $X$ is a connected $E$-manifold then $\mathop{\rm Fin}(X)$ is homeomorphic to $E$ and each $\mathop{\rm Fin}^k(X)$ is a connected $E$-manifold.
DOI : 10.4064/ba53-4-6
Keywords: mathop fin resp mathop fin denote hyperspace non empty finite subsets resp consisting points vietoris topology ell tau hilbert space weight tau ell tau linear span canonical orthonormal basis ell tau shown ell tau absorbing set ell tau absolute borel classes mathfrak alpha tau mathfrak alpha tau weight leq tau alpha mathop fin each mathop fin homeomorphic generally connected e manifold mathop fin homeomorphic each mathop fin connected e manifold

Kotaro Mine 1 ; Katsuro Sakai 1 ; Masato Yaguchi 1

1 Institute of Mathematics University of Tsukuba Tsukuba, 305-8571 Japan
@article{10_4064_ba53_4_6,
     author = {Kotaro Mine and Katsuro Sakai and Masato Yaguchi},
     title = {Hyperspaces of {Finite} {Sets} in {Universal} {Spaces
} for {Absolute} {Borel} {Classes}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {409--419},
     publisher = {mathdoc},
     volume = {53},
     number = {4},
     year = {2005},
     doi = {10.4064/ba53-4-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba53-4-6/}
}
TY  - JOUR
AU  - Kotaro Mine
AU  - Katsuro Sakai
AU  - Masato Yaguchi
TI  - Hyperspaces of Finite Sets in Universal Spaces
 for Absolute Borel Classes
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2005
SP  - 409
EP  - 419
VL  - 53
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba53-4-6/
DO  - 10.4064/ba53-4-6
LA  - en
ID  - 10_4064_ba53_4_6
ER  - 
%0 Journal Article
%A Kotaro Mine
%A Katsuro Sakai
%A Masato Yaguchi
%T Hyperspaces of Finite Sets in Universal Spaces
 for Absolute Borel Classes
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2005
%P 409-419
%V 53
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba53-4-6/
%R 10.4064/ba53-4-6
%G en
%F 10_4064_ba53_4_6
Kotaro Mine; Katsuro Sakai; Masato Yaguchi. Hyperspaces of Finite Sets in Universal Spaces
 for Absolute Borel Classes. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 53 (2005) no. 4, pp. 409-419. doi : 10.4064/ba53-4-6. http://geodesic.mathdoc.fr/articles/10.4064/ba53-4-6/

Cité par Sources :