On Countable Dense and Strong Local Homogeneity
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 53 (2005) no. 4, pp. 401-408
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We present an example of a connected, Polish, countable dense
homogeneous space $X$ that is not strongly locally homogeneous. In
fact, a nontrivial homeomorphism of $X$ is the identity on no
nonempty open subset of $X$.
Keywords:
present example connected polish countable dense homogeneous space strongly locally homogeneous nontrivial homeomorphism identity nonempty subset
Affiliations des auteurs :
Jan van Mill 1
@article{10_4064_ba53_4_5,
author = {Jan van Mill},
title = {On {Countable} {Dense} and {Strong} {Local} {Homogeneity}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {401--408},
publisher = {mathdoc},
volume = {53},
number = {4},
year = {2005},
doi = {10.4064/ba53-4-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba53-4-5/}
}
TY - JOUR AU - Jan van Mill TI - On Countable Dense and Strong Local Homogeneity JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2005 SP - 401 EP - 408 VL - 53 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba53-4-5/ DO - 10.4064/ba53-4-5 LA - en ID - 10_4064_ba53_4_5 ER -
Jan van Mill. On Countable Dense and Strong Local Homogeneity. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 53 (2005) no. 4, pp. 401-408. doi: 10.4064/ba53-4-5
Cité par Sources :