Optimal Constants in Khintchine Type Inequalities for Fermions, Rademachers and $q$-Gaussian Operators
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 53 (2005) no. 3, pp. 315-321.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For $(P_{k})$ being Rademacher, Fermion or $q$-Gaussian ($-1\leq q\leq0$) operators, we find the optimal constants $C_{2n}$, $n\in\Bbb N$, in the inequality $$ \Big\| \sum_{k=1}^N A_k \otimes P_k \Big\|_{2n} \leq [C_{2n}]^{1/2n} \max \Big\{ \Big\| \Big( \sum_{k=1}^N A_k^* A_k \Big)^{1/2} \Big\|_{L_{2n}}, \Big\| \Big( \sum_{k=1}^N A_k A_k^* \Big)^{1/2} \Big\|_{L_{2n}} \Big\},$$ valid for all finite sequences of operators $(A_{k})$ in the non-commutative $L_{2n}$ space related to a semifinite von Neumann algebra with trace. In particular, $C_{2n}=(2nr-1)!!$ for the Rademacher and Fermion sequences.
DOI : 10.4064/ba53-3-9
Keywords: being rademacher fermion q gaussian leq leq operators optimal constants bbb inequality sum otimes leq max sum * sum a * valid finite sequences operators non commutative space related semifinite von neumann algebra trace particular nr rademacher fermion sequences

Artur Buchholz 1

1 Institute of Mathematics University of Wrocław Pl. Grunwaldzki 2/4 50-384 Wroc/law, Poland
@article{10_4064_ba53_3_9,
     author = {Artur Buchholz},
     title = {Optimal {Constants} in {Khintchine} {Type} {Inequalities
for} {Fermions,} {Rademachers} and $q${-Gaussian} {Operators}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {315--321},
     publisher = {mathdoc},
     volume = {53},
     number = {3},
     year = {2005},
     doi = {10.4064/ba53-3-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba53-3-9/}
}
TY  - JOUR
AU  - Artur Buchholz
TI  - Optimal Constants in Khintchine Type Inequalities
for Fermions, Rademachers and $q$-Gaussian Operators
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2005
SP  - 315
EP  - 321
VL  - 53
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba53-3-9/
DO  - 10.4064/ba53-3-9
LA  - en
ID  - 10_4064_ba53_3_9
ER  - 
%0 Journal Article
%A Artur Buchholz
%T Optimal Constants in Khintchine Type Inequalities
for Fermions, Rademachers and $q$-Gaussian Operators
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2005
%P 315-321
%V 53
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba53-3-9/
%R 10.4064/ba53-3-9
%G en
%F 10_4064_ba53_3_9
Artur Buchholz. Optimal Constants in Khintchine Type Inequalities
for Fermions, Rademachers and $q$-Gaussian Operators. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 53 (2005) no. 3, pp. 315-321. doi : 10.4064/ba53-3-9. http://geodesic.mathdoc.fr/articles/10.4064/ba53-3-9/

Cité par Sources :