Optimal Constants in Khintchine Type Inequalities
for Fermions, Rademachers and $q$-Gaussian Operators
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 53 (2005) no. 3, pp. 315-321
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For $(P_{k})$ being Rademacher, Fermion
or $q$-Gaussian ($-1\leq q\leq0$) operators,
we find the optimal constants
$C_{2n}$, $n\in\Bbb N$,
in the inequality
$$ \Big\| \sum_{k=1}^N A_k \otimes P_k \Big\|_{2n}
\leq [C_{2n}]^{1/2n} \max \Big\{
\Big\| \Big( \sum_{k=1}^N A_k^* A_k \Big)^{1/2} \Big\|_{L_{2n}},
\Big\| \Big( \sum_{k=1}^N A_k A_k^* \Big)^{1/2} \Big\|_{L_{2n}} \Big\},$$
valid for all finite sequences
of operators $(A_{k})$
in the non-commutative $L_{2n}$
space related to a semifinite
von Neumann algebra with trace. In particular,
$C_{2n}=(2nr-1)!!$
for the Rademacher and Fermion sequences.
Keywords:
being rademacher fermion q gaussian leq leq operators optimal constants bbb inequality sum otimes leq max sum * sum a * valid finite sequences operators non commutative space related semifinite von neumann algebra trace particular nr rademacher fermion sequences
Affiliations des auteurs :
Artur Buchholz 1
@article{10_4064_ba53_3_9,
author = {Artur Buchholz},
title = {Optimal {Constants} in {Khintchine} {Type} {Inequalities
for} {Fermions,} {Rademachers} and $q${-Gaussian} {Operators}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {315--321},
publisher = {mathdoc},
volume = {53},
number = {3},
year = {2005},
doi = {10.4064/ba53-3-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba53-3-9/}
}
TY - JOUR AU - Artur Buchholz TI - Optimal Constants in Khintchine Type Inequalities for Fermions, Rademachers and $q$-Gaussian Operators JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2005 SP - 315 EP - 321 VL - 53 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba53-3-9/ DO - 10.4064/ba53-3-9 LA - en ID - 10_4064_ba53_3_9 ER -
%0 Journal Article %A Artur Buchholz %T Optimal Constants in Khintchine Type Inequalities for Fermions, Rademachers and $q$-Gaussian Operators %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2005 %P 315-321 %V 53 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ba53-3-9/ %R 10.4064/ba53-3-9 %G en %F 10_4064_ba53_3_9
Artur Buchholz. Optimal Constants in Khintchine Type Inequalities for Fermions, Rademachers and $q$-Gaussian Operators. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 53 (2005) no. 3, pp. 315-321. doi: 10.4064/ba53-3-9
Cité par Sources :