Reducibility of Symmetric Polynomials
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 53 (2005) no. 3, pp. 251-258.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A necessary and sufficient condition is given for reducibility of a symmetric polynomial whose number of variables is large in comparison to degree.
DOI : 10.4064/ba53-3-2
Keywords: necessary sufficient condition given reducibility symmetric polynomial whose number variables large comparison degree

A. Schinzel 1

1 Institute of Mathematics Polish Academy of Sciences P.O. Box 21 00-956 Warszawa, Poland
@article{10_4064_ba53_3_2,
     author = {A. Schinzel},
     title = {Reducibility of {Symmetric} {Polynomials}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {251--258},
     publisher = {mathdoc},
     volume = {53},
     number = {3},
     year = {2005},
     doi = {10.4064/ba53-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba53-3-2/}
}
TY  - JOUR
AU  - A. Schinzel
TI  - Reducibility of Symmetric Polynomials
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2005
SP  - 251
EP  - 258
VL  - 53
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba53-3-2/
DO  - 10.4064/ba53-3-2
LA  - en
ID  - 10_4064_ba53_3_2
ER  - 
%0 Journal Article
%A A. Schinzel
%T Reducibility of Symmetric Polynomials
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2005
%P 251-258
%V 53
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba53-3-2/
%R 10.4064/ba53-3-2
%G en
%F 10_4064_ba53_3_2
A. Schinzel. Reducibility of Symmetric Polynomials. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 53 (2005) no. 3, pp. 251-258. doi : 10.4064/ba53-3-2. http://geodesic.mathdoc.fr/articles/10.4064/ba53-3-2/

Cité par Sources :