Ulm–Kaplansky invariants of $S(KG)/G$
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 53 (2005) no. 2, pp. 147-156.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $G$ be an infinite abelian $p$-group and let $K$ be a field of the first kind with respect to $p$ of characteristic different from $p$ such that $s_p(K) = {\mathbb N}$ or $s_p(K)={\mathbb N}\cup\{0\}$. The main result of the paper is the computation of the Ulm–Kaplansky functions of the factor group $S(KG)/G$ of the normalized Sylow $p$-subgroup $S(KG)$ in the group ring $KG$ modulo $G$. We also characterize the basic subgroups of $S(KG)/G$ by proving that they are isomorphic to $S(KB)/B$, where $B$ is a basic subgroup of $G$.
DOI : 10.4064/ba53-2-4
Keywords: infinite abelian p group field first kind respect characteristic different mathbb mathbb cup main result paper computation ulm kaplansky functions factor group normalized sylow p subgroup group ring modulo characterize basic subgroups proving isomorphic where basic subgroup

P. V. Danchev 1

1 13, General Kutuzov Street, block 7, floor 2, flat 4 4003 Plovdiv, Bulgaria
@article{10_4064_ba53_2_4,
     author = {P. V. Danchev},
     title = {Ulm{\textendash}Kaplansky invariants of $S(KG)/G$},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {147--156},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {2005},
     doi = {10.4064/ba53-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba53-2-4/}
}
TY  - JOUR
AU  - P. V. Danchev
TI  - Ulm–Kaplansky invariants of $S(KG)/G$
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2005
SP  - 147
EP  - 156
VL  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba53-2-4/
DO  - 10.4064/ba53-2-4
LA  - en
ID  - 10_4064_ba53_2_4
ER  - 
%0 Journal Article
%A P. V. Danchev
%T Ulm–Kaplansky invariants of $S(KG)/G$
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2005
%P 147-156
%V 53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba53-2-4/
%R 10.4064/ba53-2-4
%G en
%F 10_4064_ba53_2_4
P. V. Danchev. Ulm–Kaplansky invariants of $S(KG)/G$. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 53 (2005) no. 2, pp. 147-156. doi : 10.4064/ba53-2-4. http://geodesic.mathdoc.fr/articles/10.4064/ba53-2-4/

Cité par Sources :