Ulm–Kaplansky invariants of $S(KG)/G$
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 53 (2005) no. 2, pp. 147-156
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $G$ be an infinite abelian $p$-group and let
$K$ be a field of the first kind with respect to $p$ of characteristic
different from $p$ such that $s_p(K) = {\mathbb N}$ or $s_p(K)={\mathbb N}\cup\{0\}$.
The main result of the paper is the computation
of the Ulm–Kaplansky functions of the factor group $S(KG)/G$ of the
normalized Sylow $p$-subgroup $S(KG)$ in the group ring $KG$ modulo $G$.
We also characterize the basic subgroups of $S(KG)/G$ by proving that they are
isomorphic to $S(KB)/B$, where $B$ is a basic subgroup of $G$.
Keywords:
infinite abelian p group field first kind respect characteristic different mathbb mathbb cup main result paper computation ulm kaplansky functions factor group normalized sylow p subgroup group ring modulo characterize basic subgroups proving isomorphic where basic subgroup
Affiliations des auteurs :
P. V. Danchev 1
@article{10_4064_ba53_2_4,
author = {P. V. Danchev},
title = {Ulm{\textendash}Kaplansky invariants of $S(KG)/G$},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {147--156},
publisher = {mathdoc},
volume = {53},
number = {2},
year = {2005},
doi = {10.4064/ba53-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba53-2-4/}
}
TY - JOUR AU - P. V. Danchev TI - Ulm–Kaplansky invariants of $S(KG)/G$ JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2005 SP - 147 EP - 156 VL - 53 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba53-2-4/ DO - 10.4064/ba53-2-4 LA - en ID - 10_4064_ba53_2_4 ER -
P. V. Danchev. Ulm–Kaplansky invariants of $S(KG)/G$. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 53 (2005) no. 2, pp. 147-156. doi: 10.4064/ba53-2-4
Cité par Sources :