Universal Indestructibility is Consistent with
Two Strongly Compact Cardinals
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 53 (2005) no. 2, pp. 131-135
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We show that universal indestructibility
for both strong compactness and supercompactness
is consistent
with the existence of two strongly
compact cardinals.
This is in contrast to the fact that if $\kappa$
is supercompact and universal indestructibility
for either strong compactness or
supercompactness holds, then no cardinal
$\lambda > \kappa$ is measurable.
Keywords:
universal indestructibility strong compactness supercompactness consistent existence strongly compact cardinals contrast kappa supercompact universal indestructibility either strong compactness supercompactness holds cardinal lambda kappa measurable
Affiliations des auteurs :
Arthur W. Apter 1
@article{10_4064_ba53_2_2,
author = {Arthur W. Apter},
title = {Universal {Indestructibility} is {Consistent} {with
Two} {Strongly} {Compact} {Cardinals}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {131--135},
year = {2005},
volume = {53},
number = {2},
doi = {10.4064/ba53-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba53-2-2/}
}
TY - JOUR AU - Arthur W. Apter TI - Universal Indestructibility is Consistent with Two Strongly Compact Cardinals JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2005 SP - 131 EP - 135 VL - 53 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/ba53-2-2/ DO - 10.4064/ba53-2-2 LA - en ID - 10_4064_ba53_2_2 ER -
%0 Journal Article %A Arthur W. Apter %T Universal Indestructibility is Consistent with Two Strongly Compact Cardinals %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2005 %P 131-135 %V 53 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/ba53-2-2/ %R 10.4064/ba53-2-2 %G en %F 10_4064_ba53_2_2
Arthur W. Apter. Universal Indestructibility is Consistent with Two Strongly Compact Cardinals. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 53 (2005) no. 2, pp. 131-135. doi: 10.4064/ba53-2-2
Cité par Sources :