Some Generalization of Nearaffine Planes
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 53 (2005) no. 1, pp. 87-97
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
There are three kinds of Benz planes: Möbius planes, Laguerre planes and Minkowski planes. A Minkowski plane satisfying an additional axiom is connected with some other structure called a nearaffine plane. We construct an analogous structure for a Laguerre plane. Moreover, our description is common for both cases.
Keywords:
there three kinds benz planes bius planes laguerre planes minkowski planes minkowski plane satisfying additional axiom connected other structure called nearaffine plane construct analogous structure laguerre plane moreover description common cases
Affiliations des auteurs :
Jan Jakóbowski 1
@article{10_4064_ba53_1_8,
author = {Jan Jak\'obowski},
title = {Some {Generalization} of {Nearaffine} {Planes}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {87--97},
publisher = {mathdoc},
volume = {53},
number = {1},
year = {2005},
doi = {10.4064/ba53-1-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba53-1-8/}
}
TY - JOUR AU - Jan Jakóbowski TI - Some Generalization of Nearaffine Planes JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2005 SP - 87 EP - 97 VL - 53 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba53-1-8/ DO - 10.4064/ba53-1-8 LA - en ID - 10_4064_ba53_1_8 ER -
Jan Jakóbowski. Some Generalization of Nearaffine Planes. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 53 (2005) no. 1, pp. 87-97. doi: 10.4064/ba53-1-8
Cité par Sources :