A Non-standard Version of the Borsuk–Ulam Theorem
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 53 (2005) no. 1, pp. 111-119
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
E. Pannwitz showed in 1952~%\cite{EP}
that for any $n\geq 2$,
there exist continuous maps $\varphi:S^{n}\to S^{n}$
and $f:S^{n}\to \mathbb{R}^{2}$ such that $f(x)\not =
f(\varphi(x))$ for any $x\in S^{n}$.
We prove that, under certain conditions, given continuous maps
$\psi,\varphi:X\to X$ and $f:X\to \mathbb{R}^{2}$, although the
existence of a point $x\in X$ such that $f(\psi(x))=f(\varphi(x))$
cannot always be assured, it is possible to
establish an interesting relation between the points $f(\varphi
\psi(x)), f(\varphi^{2}(x))$ and $f(\psi^{2}(x))$ when
$f(\varphi(x))\not =f(\psi(x))$ for any $x\in X$, and a
non-standard version of the Borsuk–Ulam theorem is
obtained.
Keywords:
pannwitz showed cite geq there exist continuous maps varphi mathbb varphi prove under certain conditions given continuous maps psi varphi mathbb although existence point psi varphi cannot always assured possible establish interesting relation between points varphi psi varphi psi varphi psi non standard version borsuk ulam theorem obtained
Affiliations des auteurs :
Carlos Biasi 1 ; Denise de Mattos 2
@article{10_4064_ba53_1_10,
author = {Carlos Biasi and Denise de Mattos},
title = {A {Non-standard} {Version} of the {Borsuk{\textendash}Ulam} {Theorem}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {111--119},
publisher = {mathdoc},
volume = {53},
number = {1},
year = {2005},
doi = {10.4064/ba53-1-10},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba53-1-10/}
}
TY - JOUR AU - Carlos Biasi AU - Denise de Mattos TI - A Non-standard Version of the Borsuk–Ulam Theorem JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2005 SP - 111 EP - 119 VL - 53 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba53-1-10/ DO - 10.4064/ba53-1-10 LA - en ID - 10_4064_ba53_1_10 ER -
%0 Journal Article %A Carlos Biasi %A Denise de Mattos %T A Non-standard Version of the Borsuk–Ulam Theorem %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2005 %P 111-119 %V 53 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ba53-1-10/ %R 10.4064/ba53-1-10 %G en %F 10_4064_ba53_1_10
Carlos Biasi; Denise de Mattos. A Non-standard Version of the Borsuk–Ulam Theorem. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 53 (2005) no. 1, pp. 111-119. doi: 10.4064/ba53-1-10
Cité par Sources :