Characterization of Globally Lipschitz
Nemytskiĭ Operators Between Spaces of Set-Valued
Functions of Bounded $ \varphi $-Variation in the Sense of Riesz
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 52 (2004) no. 4, pp. 417-430
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $ (X,\|\cdot\| )$ and $ (Y,\|\cdot\| )$ be two normed spaces and
$K$ be a convex cone in $X$. Let $CC(Y)$ be the family of all non-empty
convex compact subsets of $Y$. We consider the Nemytskiĭ operators, i.e.
the composition operators defined by $ (Nu)(t)=H(t,u(t))$, where $ H$ is
a given set-valued function. It is shown that if the operator $N$ maps
the space
$RV_{\varphi_1}([a,b];K)$ into $
RW_{\varphi_2}([a,b];CC(Y))$
(both are spaces of functions of bounded $\varphi$-variation in the sense of
Riesz), and if it is globally Lipschitz, then it
has to be of the form $H(t,u(t))=A(t)u(t)+B(t)$, where $ A(t)$ is a
linear continuous set-valued function and $B$ is a set-valued function of
bounded $\varphi_2$-variation in the sense of Riesz. This generalizes
results of G. Zawadzka \cite{GZ}, A. Smajdor and W. Smajdor \cite{ASW},
N. Merentes and K. Nikodem \cite{MN}, and N. Merentes and S. Rivas
\cite{MS}.
Keywords:
cdot cdot normed spaces convex cone family non empty convex compact subsets consider nemytski operators composition operators defined t where given set valued function shown operator maps space varphi varphi spaces functions bounded varphi variation sense riesz globally lipschitz has form t t where linear continuous set valued function set valued function bounded varphi variation sense riesz generalizes results zawadzka cite smajdor smajdor cite asw merentes nikodem cite merentes rivas cite
Affiliations des auteurs :
N. Merentes 1 ; J. L. Sánchez Hernández 2
@article{10_4064_ba52_4_8,
author = {N. Merentes and J. L. S\'anchez Hern\'andez},
title = {Characterization of {Globally} {Lipschitz
} {Nemytski\u{i}} {Operators} {Between} {Spaces} of {Set-Valued
} {Functions} of {Bounded} $ \varphi ${-Variation} in the {Sense} of {Riesz}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {417--430},
year = {2004},
volume = {52},
number = {4},
doi = {10.4064/ba52-4-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba52-4-8/}
}
TY - JOUR AU - N. Merentes AU - J. L. Sánchez Hernández TI - Characterization of Globally Lipschitz Nemytskiĭ Operators Between Spaces of Set-Valued Functions of Bounded $ \varphi $-Variation in the Sense of Riesz JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2004 SP - 417 EP - 430 VL - 52 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4064/ba52-4-8/ DO - 10.4064/ba52-4-8 LA - en ID - 10_4064_ba52_4_8 ER -
%0 Journal Article %A N. Merentes %A J. L. Sánchez Hernández %T Characterization of Globally Lipschitz Nemytskiĭ Operators Between Spaces of Set-Valued Functions of Bounded $ \varphi $-Variation in the Sense of Riesz %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2004 %P 417-430 %V 52 %N 4 %U http://geodesic.mathdoc.fr/articles/10.4064/ba52-4-8/ %R 10.4064/ba52-4-8 %G en %F 10_4064_ba52_4_8
N. Merentes; J. L. Sánchez Hernández. Characterization of Globally Lipschitz Nemytskiĭ Operators Between Spaces of Set-Valued Functions of Bounded $ \varphi $-Variation in the Sense of Riesz. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 52 (2004) no. 4, pp. 417-430. doi: 10.4064/ba52-4-8
Cité par Sources :