Characterization of Globally Lipschitz Nemytskiĭ Operators Between Spaces of Set-Valued Functions of Bounded $ \varphi $-Variation in the Sense of Riesz
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 52 (2004) no. 4, pp. 417-430.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $ (X,\|\cdot\| )$ and $ (Y,\|\cdot\| )$ be two normed spaces and $K$ be a convex cone in $X$. Let $CC(Y)$ be the family of all non-empty convex compact subsets of $Y$. We consider the Nemytskiĭ operators, i.e. the composition operators defined by $ (Nu)(t)=H(t,u(t))$, where $ H$ is a given set-valued function. It is shown that if the operator $N$ maps the space $RV_{\varphi_1}([a,b];K)$ into $ RW_{\varphi_2}([a,b];CC(Y))$ (both are spaces of functions of bounded $\varphi$-variation in the sense of Riesz), and if it is globally Lipschitz, then it has to be of the form $H(t,u(t))=A(t)u(t)+B(t)$, where $ A(t)$ is a linear continuous set-valued function and $B$ is a set-valued function of bounded $\varphi_2$-variation in the sense of Riesz. This generalizes results of G. Zawadzka \cite{GZ}, A. Smajdor and W. Smajdor \cite{ASW}, N. Merentes and K. Nikodem \cite{MN}, and N. Merentes and S. Rivas \cite{MS}.
DOI : 10.4064/ba52-4-8
Keywords: cdot cdot normed spaces convex cone family non empty convex compact subsets consider nemytski operators composition operators defined t where given set valued function shown operator maps space varphi varphi spaces functions bounded varphi variation sense riesz globally lipschitz has form t t where linear continuous set valued function set valued function bounded varphi variation sense riesz generalizes results zawadzka cite smajdor smajdor cite asw merentes nikodem cite merentes rivas cite

N. Merentes 1 ; J. L. Sánchez Hernández 2

1 Departamento de Matemática Universidad Central de Venezuela Caracas 1020A, Venezuela
2 School of Mathematics Georgia Tech Atlanta, GA 30332-0160, U.S.A.
@article{10_4064_ba52_4_8,
     author = {N. Merentes and J. L. S\'anchez Hern\'andez},
     title = {Characterization of {Globally} {Lipschitz
} {Nemytski\u{i}} {Operators} {Between} {Spaces} of {Set-Valued
} {Functions} of {Bounded} $ \varphi ${-Variation} in the {Sense} of {Riesz}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {417--430},
     publisher = {mathdoc},
     volume = {52},
     number = {4},
     year = {2004},
     doi = {10.4064/ba52-4-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba52-4-8/}
}
TY  - JOUR
AU  - N. Merentes
AU  - J. L. Sánchez Hernández
TI  - Characterization of Globally Lipschitz
 Nemytskiĭ Operators Between Spaces of Set-Valued
 Functions of Bounded $ \varphi $-Variation in the Sense of Riesz
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2004
SP  - 417
EP  - 430
VL  - 52
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba52-4-8/
DO  - 10.4064/ba52-4-8
LA  - en
ID  - 10_4064_ba52_4_8
ER  - 
%0 Journal Article
%A N. Merentes
%A J. L. Sánchez Hernández
%T Characterization of Globally Lipschitz
 Nemytskiĭ Operators Between Spaces of Set-Valued
 Functions of Bounded $ \varphi $-Variation in the Sense of Riesz
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2004
%P 417-430
%V 52
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba52-4-8/
%R 10.4064/ba52-4-8
%G en
%F 10_4064_ba52_4_8
N. Merentes; J. L. Sánchez Hernández. Characterization of Globally Lipschitz
 Nemytskiĭ Operators Between Spaces of Set-Valued
 Functions of Bounded $ \varphi $-Variation in the Sense of Riesz. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 52 (2004) no. 4, pp. 417-430. doi : 10.4064/ba52-4-8. http://geodesic.mathdoc.fr/articles/10.4064/ba52-4-8/

Cité par Sources :