On Stochastic Differential Equations with Reflecting Boundary Condition in Convex Domains
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 52 (2004) no. 4, pp. 445-455
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $D$ be an open convex set in $\mathbb R^d$ and let $F$ be a Lipschitz
operator defined on the space of adapted càdlàg processes. We
show that for any adapted process $H$ and any semimartingale $Z$
there exists a unique strong solution of the following
stochastic differential equation (SDE) with reflection on the
boundary of $D$:
$$
X_t=H_t+\int_0^t\, \langle F(X)_{s-},dZ_s\rangle + K_t,
\ \quad t \in \mathbb R^+.
$$
Our proofs are based on new a priori estimates for solutions
of the deterministic Skorokhod problem.
Keywords:
convex set mathbb lipschitz operator defined space adapted processes adapted process semimartingale there exists unique strong solution following stochastic differential equation sde reflection boundary t int langle s rangle quad mathbb proofs based priori estimates solutions deterministic skorokhod problem
Affiliations des auteurs :
Weronika Łaukajtys 1
@article{10_4064_ba52_4_11,
author = {Weronika {\L}aukajtys},
title = {On {Stochastic} {Differential} {Equations} with {Reflecting} {Boundary} {Condition} in {Convex} {Domains}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {445--455},
publisher = {mathdoc},
volume = {52},
number = {4},
year = {2004},
doi = {10.4064/ba52-4-11},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba52-4-11/}
}
TY - JOUR AU - Weronika Łaukajtys TI - On Stochastic Differential Equations with Reflecting Boundary Condition in Convex Domains JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2004 SP - 445 EP - 455 VL - 52 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba52-4-11/ DO - 10.4064/ba52-4-11 LA - en ID - 10_4064_ba52_4_11 ER -
%0 Journal Article %A Weronika Łaukajtys %T On Stochastic Differential Equations with Reflecting Boundary Condition in Convex Domains %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2004 %P 445-455 %V 52 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ba52-4-11/ %R 10.4064/ba52-4-11 %G en %F 10_4064_ba52_4_11
Weronika Łaukajtys. On Stochastic Differential Equations with Reflecting Boundary Condition in Convex Domains. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 52 (2004) no. 4, pp. 445-455. doi: 10.4064/ba52-4-11
Cité par Sources :