An Axiomatics for Hyperbolic Projective-Metric Planes in Terms of Lines and Orthogonality
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 52 (2004) no. 3, pp. 297-302.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Hyperbolic projective-metric planes, first axiomatized by R. Lingenberg [7], are shown to be axiomatizable in terms of lines and orthogonality.
DOI : 10.4064/ba52-3-9
Keywords: hyperbolic projective metric planes first axiomatized lingenberg shown axiomatizable terms lines orthogonality

Victor Pambuccian 1

1 Department of Integrative Studies Arizona State University West P.O. Box 37100 Phoenix, AZ 85069-7100, U.S.A.
@article{10_4064_ba52_3_9,
     author = {Victor Pambuccian},
     title = {An {Axiomatics} for {Hyperbolic} {Projective-Metric} {Planes
} in {Terms} of {Lines} and {Orthogonality}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {297--302},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {2004},
     doi = {10.4064/ba52-3-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba52-3-9/}
}
TY  - JOUR
AU  - Victor Pambuccian
TI  - An Axiomatics for Hyperbolic Projective-Metric Planes
 in Terms of Lines and Orthogonality
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2004
SP  - 297
EP  - 302
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba52-3-9/
DO  - 10.4064/ba52-3-9
LA  - en
ID  - 10_4064_ba52_3_9
ER  - 
%0 Journal Article
%A Victor Pambuccian
%T An Axiomatics for Hyperbolic Projective-Metric Planes
 in Terms of Lines and Orthogonality
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2004
%P 297-302
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba52-3-9/
%R 10.4064/ba52-3-9
%G en
%F 10_4064_ba52_3_9
Victor Pambuccian. An Axiomatics for Hyperbolic Projective-Metric Planes
 in Terms of Lines and Orthogonality. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 52 (2004) no. 3, pp. 297-302. doi : 10.4064/ba52-3-9. http://geodesic.mathdoc.fr/articles/10.4064/ba52-3-9/

Cité par Sources :