Hyperbolic Equations in Uniform Spaces
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 52 (2004) no. 3, pp. 249-263
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The paper is devoted to the Cauchy problem for a semilinear damped wave equation in the whole of ${\mathbb R}^n$. Under suitable assumptions a bounded dissipative semigroup of global solutions is constructed in a locally uniform space
$\dot H^1_{\rm lu}({\mathbb R}^n)\times \dot L^2_{\rm lu}({\mathbb R}^n)$. Asymptotic compactness of this semigroup and the existence of a global attractor are then shown.
Keywords:
paper devoted cauchy problem semilinear damped wave equation whole mathbb under suitable assumptions bounded dissipative semigroup global solutions constructed locally uniform space dot mathbb times dot mathbb asymptotic compactness semigroup existence global attractor shown
Affiliations des auteurs :
J. W. Cholewa 1 ; Tomasz Dlotko 1
@article{10_4064_ba52_3_5,
author = {J. W. Cholewa and Tomasz Dlotko},
title = {Hyperbolic {Equations} in {Uniform} {Spaces}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {249--263},
year = {2004},
volume = {52},
number = {3},
doi = {10.4064/ba52-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba52-3-5/}
}
TY - JOUR AU - J. W. Cholewa AU - Tomasz Dlotko TI - Hyperbolic Equations in Uniform Spaces JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2004 SP - 249 EP - 263 VL - 52 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/ba52-3-5/ DO - 10.4064/ba52-3-5 LA - en ID - 10_4064_ba52_3_5 ER -
J. W. Cholewa; Tomasz Dlotko. Hyperbolic Equations in Uniform Spaces. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 52 (2004) no. 3, pp. 249-263. doi: 10.4064/ba52-3-5
Cité par Sources :