On the Łojasiewicz Exponent near the Fibre of a Polynomial
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 52 (2004) no. 3, pp. 231-236.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The equivalence of the definitions of the Łojasiewicz exponent introduced by Ha and by Chądzyński and Krasiński is proved. Moreover we show that if the above exponents are less than $-1$ then they are attained at a curve meromorphic at infinity.
DOI : 10.4064/ba52-3-3
Mots-clés : equivalence definitions ojasiewicz exponent introduced dzy ski krasi ski proved moreover above exponents attained curve meromorphic infinity

Grzegorz Skalski 1

1 Faculty of Mathematics University of Łódź S. Banacha 22 90-238 Łódź, Poland
@article{10_4064_ba52_3_3,
     author = {Grzegorz Skalski},
     title = {On the {{\L}ojasiewicz} {Exponent} near
 the {Fibre} of a {Polynomial}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {231--236},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {2004},
     doi = {10.4064/ba52-3-3},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba52-3-3/}
}
TY  - JOUR
AU  - Grzegorz Skalski
TI  - On the Łojasiewicz Exponent near
 the Fibre of a Polynomial
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2004
SP  - 231
EP  - 236
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba52-3-3/
DO  - 10.4064/ba52-3-3
LA  - pl
ID  - 10_4064_ba52_3_3
ER  - 
%0 Journal Article
%A Grzegorz Skalski
%T On the Łojasiewicz Exponent near
 the Fibre of a Polynomial
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2004
%P 231-236
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba52-3-3/
%R 10.4064/ba52-3-3
%G pl
%F 10_4064_ba52_3_3
Grzegorz Skalski. On the Łojasiewicz Exponent near
 the Fibre of a Polynomial. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 52 (2004) no. 3, pp. 231-236. doi : 10.4064/ba52-3-3. http://geodesic.mathdoc.fr/articles/10.4064/ba52-3-3/

Cité par Sources :