On Alternatives of Polynomial Congruences
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 52 (2004) no. 2, pp. 123-132.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

What should be assumed about the integral polynomials $f_{1}(x),\ldots,f_{k}(x)$ in order that the solvability of the congruence $f_{1}(x)f_{2}(x)\cdots f_{k}(x)\equiv 0\pmod{p}$ for sufficiently large primes $p$ implies the solvability of the equation $f_{1}(x)f_{2}(x)\cdots f_{k}(x)=0$ in integers $x$? We provide some explicit characterizations for the cases when $f_j(x)$ are binomials or have cyclic splitting fields.
DOI : 10.4064/ba52-2-3
Mots-clés : what should assumed about integral polynomials ldots order solvability congruence cdots equiv pmod sufficiently large primes implies solvability equation cdots integers provide explicit characterizations cases binomials have cyclic splitting fields

Mariusz Skałba 1

1 Institute of Mathematics Polish Academy of Sciences P.O. Box 21 00-956 Warszawa, Poland
@article{10_4064_ba52_2_3,
     author = {Mariusz Ska{\l}ba},
     title = {On {Alternatives} of {Polynomial} {Congruences}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {123--132},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {2004},
     doi = {10.4064/ba52-2-3},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba52-2-3/}
}
TY  - JOUR
AU  - Mariusz Skałba
TI  - On Alternatives of Polynomial Congruences
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2004
SP  - 123
EP  - 132
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba52-2-3/
DO  - 10.4064/ba52-2-3
LA  - fr
ID  - 10_4064_ba52_2_3
ER  - 
%0 Journal Article
%A Mariusz Skałba
%T On Alternatives of Polynomial Congruences
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2004
%P 123-132
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba52-2-3/
%R 10.4064/ba52-2-3
%G fr
%F 10_4064_ba52_2_3
Mariusz Skałba. On Alternatives of Polynomial Congruences. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 52 (2004) no. 2, pp. 123-132. doi : 10.4064/ba52-2-3. http://geodesic.mathdoc.fr/articles/10.4064/ba52-2-3/

Cité par Sources :