Locally Nilpotent Monomial Derivations
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 52 (2004) no. 2, pp. 119-121.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that every locally nilpotent monomial ${\textrm k}$-derivation of ${\textrm k}[X_{1}, {\ldotp \ldotp \ldotp },X_{n}]$ is triangular, whenever ${\textrm k}$ is a ring of characteristic zero. A method of testing monomial ${\textrm k}$-derivations for local nilpotency is also presented.
DOI : 10.4064/ba52-2-2
Keywords: prove every locally nilpotent monomial textrm derivation textrm ldotp ldotp ldotp triangular whenever textrm ring characteristic zero method testing monomial textrm derivations local nilpotency presented

Marek Karaś 1

1 Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Krak/ow, Poland and Division of Mathematics and Computer Sciences Faculty of Sciences Vrije Universiteit De Boelelaan 1081 A 1081 HV Amsterdam, The Netherlands
@article{10_4064_ba52_2_2,
     author = {Marek Kara\'s},
     title = {Locally {Nilpotent} {Monomial} {Derivations}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {119--121},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {2004},
     doi = {10.4064/ba52-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba52-2-2/}
}
TY  - JOUR
AU  - Marek Karaś
TI  - Locally Nilpotent Monomial Derivations
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2004
SP  - 119
EP  - 121
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba52-2-2/
DO  - 10.4064/ba52-2-2
LA  - en
ID  - 10_4064_ba52_2_2
ER  - 
%0 Journal Article
%A Marek Karaś
%T Locally Nilpotent Monomial Derivations
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2004
%P 119-121
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba52-2-2/
%R 10.4064/ba52-2-2
%G en
%F 10_4064_ba52_2_2
Marek Karaś. Locally Nilpotent Monomial Derivations. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 52 (2004) no. 2, pp. 119-121. doi : 10.4064/ba52-2-2. http://geodesic.mathdoc.fr/articles/10.4064/ba52-2-2/

Cité par Sources :