Locally Nilpotent Monomial Derivations
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 52 (2004) no. 2, pp. 119-121
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that every locally nilpotent monomial ${\textrm k}$-derivation of ${\textrm k}[X_{1}, {\ldotp \ldotp \ldotp },X_{n}]$ is triangular, whenever ${\textrm k}$ is a ring of characteristic zero. A method of testing monomial ${\textrm k}$-derivations for local nilpotency is also presented.
Keywords:
prove every locally nilpotent monomial textrm derivation textrm ldotp ldotp ldotp triangular whenever textrm ring characteristic zero method testing monomial textrm derivations local nilpotency presented
Affiliations des auteurs :
Marek Karaś 1
@article{10_4064_ba52_2_2,
author = {Marek Kara\'s},
title = {Locally {Nilpotent} {Monomial} {Derivations}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {119--121},
publisher = {mathdoc},
volume = {52},
number = {2},
year = {2004},
doi = {10.4064/ba52-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba52-2-2/}
}
TY - JOUR AU - Marek Karaś TI - Locally Nilpotent Monomial Derivations JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2004 SP - 119 EP - 121 VL - 52 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba52-2-2/ DO - 10.4064/ba52-2-2 LA - en ID - 10_4064_ba52_2_2 ER -
Marek Karaś. Locally Nilpotent Monomial Derivations. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 52 (2004) no. 2, pp. 119-121. doi: 10.4064/ba52-2-2
Cité par Sources :