Transitive Properties of Ideals
on Generalized Cantor Spaces
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 52 (2004) no. 2, pp. 115-118
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We compute transitive cardinal coefficients of ideals on generalized Cantor spaces. In particular, we show that there exists a null set $A\subseteq 2^{\omega _1^{\ }}$ such that for every null set $B\subseteq 2^{\omega _1^{\ }}$ we can find $x\in 2^{\omega _1^{\ }}$ such that $A\cup (A+x)$ cannot be covered by any translation of $B$.
Keywords:
compute transitive cardinal coefficients ideals generalized cantor spaces particular there exists null set subseteq omega every null set subseteq omega omega cup cannot covered translation
Affiliations des auteurs :
Jan Kraszewski 1
@article{10_4064_ba52_2_1,
author = {Jan Kraszewski},
title = {Transitive {Properties} of {Ideals
} on {Generalized} {Cantor} {Spaces}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {115--118},
publisher = {mathdoc},
volume = {52},
number = {2},
year = {2004},
doi = {10.4064/ba52-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba52-2-1/}
}
TY - JOUR AU - Jan Kraszewski TI - Transitive Properties of Ideals on Generalized Cantor Spaces JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2004 SP - 115 EP - 118 VL - 52 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba52-2-1/ DO - 10.4064/ba52-2-1 LA - en ID - 10_4064_ba52_2_1 ER -
%0 Journal Article %A Jan Kraszewski %T Transitive Properties of Ideals on Generalized Cantor Spaces %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2004 %P 115-118 %V 52 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ba52-2-1/ %R 10.4064/ba52-2-1 %G en %F 10_4064_ba52_2_1
Jan Kraszewski. Transitive Properties of Ideals on Generalized Cantor Spaces. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 52 (2004) no. 2, pp. 115-118. doi: 10.4064/ba52-2-1
Cité par Sources :