Transitive Properties of Ideals
on Generalized Cantor Spaces
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 52 (2004) no. 2, pp. 115-118
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We compute transitive cardinal coefficients of ideals on generalized Cantor spaces. In particular, we show that there exists a null set $A\subseteq 2^{\omega _1^{\ }}$ such that for every null set $B\subseteq 2^{\omega _1^{\ }}$ we can find $x\in 2^{\omega _1^{\ }}$ such that $A\cup (A+x)$ cannot be covered by any translation of $B$.
Keywords:
compute transitive cardinal coefficients ideals generalized cantor spaces particular there exists null set subseteq omega every null set subseteq omega omega cup cannot covered translation
Affiliations des auteurs :
Jan Kraszewski  1
@article{10_4064_ba52_2_1,
author = {Jan Kraszewski},
title = {Transitive {Properties} of {Ideals
} on {Generalized} {Cantor} {Spaces}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {115--118},
year = {2004},
volume = {52},
number = {2},
doi = {10.4064/ba52-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba52-2-1/}
}
TY - JOUR AU - Jan Kraszewski TI - Transitive Properties of Ideals on Generalized Cantor Spaces JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2004 SP - 115 EP - 118 VL - 52 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/ba52-2-1/ DO - 10.4064/ba52-2-1 LA - en ID - 10_4064_ba52_2_1 ER -
Jan Kraszewski. Transitive Properties of Ideals on Generalized Cantor Spaces. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 52 (2004) no. 2, pp. 115-118. doi: 10.4064/ba52-2-1
Cité par Sources :