Transitive Properties of Ideals on Generalized Cantor Spaces
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 52 (2004) no. 2, pp. 115-118.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We compute transitive cardinal coefficients of ideals on generalized Cantor spaces. In particular, we show that there exists a null set $A\subseteq 2^{\omega _1^{\ }}$ such that for every null set $B\subseteq 2^{\omega _1^{\ }}$ we can find $x\in 2^{\omega _1^{\ }}$ such that $A\cup (A+x)$ cannot be covered by any translation of $B$.
DOI : 10.4064/ba52-2-1
Keywords: compute transitive cardinal coefficients ideals generalized cantor spaces particular there exists null set subseteq omega every null set subseteq omega omega cup cannot covered translation

Jan Kraszewski 1

1 Mathematical Institute University of Wrocław Pl. Grunwaldzki 2/4 50-384 Wrocław, Poland
@article{10_4064_ba52_2_1,
     author = {Jan Kraszewski},
     title = {Transitive {Properties} of {Ideals
} on {Generalized} {Cantor} {Spaces}},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     pages = {115--118},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {2004},
     doi = {10.4064/ba52-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ba52-2-1/}
}
TY  - JOUR
AU  - Jan Kraszewski
TI  - Transitive Properties of Ideals
 on Generalized Cantor Spaces
JO  - Bulletin of the Polish Academy of Sciences. Mathematics
PY  - 2004
SP  - 115
EP  - 118
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ba52-2-1/
DO  - 10.4064/ba52-2-1
LA  - en
ID  - 10_4064_ba52_2_1
ER  - 
%0 Journal Article
%A Jan Kraszewski
%T Transitive Properties of Ideals
 on Generalized Cantor Spaces
%J Bulletin of the Polish Academy of Sciences. Mathematics
%D 2004
%P 115-118
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ba52-2-1/
%R 10.4064/ba52-2-1
%G en
%F 10_4064_ba52_2_1
Jan Kraszewski. Transitive Properties of Ideals
 on Generalized Cantor Spaces. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 52 (2004) no. 2, pp. 115-118. doi : 10.4064/ba52-2-1. http://geodesic.mathdoc.fr/articles/10.4064/ba52-2-1/

Cité par Sources :