On an Invariant Borel Measure in Hilbert Space
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 52 (2004) no. 1, pp. 47-51
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
An example of a nonzero $\sigma $-finite Borel measure $\mu $ with everywhere dense linear manifold ${{\Bbb I}}_{\mu }$ of admissible (in the sense of invariance) translation vectors is constructed in the Hilbert space $\ell _2$ such that $\mu $ and any shift $\mu ^{(a)}$ of $\mu $ by a vector $a \in \ell _2 \setminus {{\Bbb I}}_{\mu }$ are neither equivalent nor orthogonal. This extends a result established in [7].
Keywords:
example nonzero sigma finite borel measure everywhere dense linear manifold bbb admissible sense invariance translation vectors constructed hilbert space ell shift vector ell setminus bbb neither equivalent nor orthogonal extends result established
Affiliations des auteurs :
G. Pantsulaia 1
@article{10_4064_ba52_1_5,
author = {G. Pantsulaia},
title = {On an {Invariant} {Borel} {Measure} in {Hilbert} {Space}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {47--51},
year = {2004},
volume = {52},
number = {1},
doi = {10.4064/ba52-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba52-1-5/}
}
G. Pantsulaia. On an Invariant Borel Measure in Hilbert Space. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 52 (2004) no. 1, pp. 47-51. doi: 10.4064/ba52-1-5
Cité par Sources :