Infinite Iterated Function Systems:
A Multivalued Approach
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 52 (2004) no. 1, pp. 1-8
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that a compact family of bounded condensing multifunctions has bounded condensing set-theoretic union. Compactness is understood in the sense of the Chebyshev uniform semimetric induced by the Hausdorff distance and condensity is taken w.r.t. the Hausdorff measure of noncompactness. As a tool, we present an estimate for the measure of an infinite union. Then we apply our result to infinite iterated function systems.
Keywords:
prove compact family bounded condensing multifunctions has bounded condensing set theoretic union compactness understood sense chebyshev uniform semimetric induced hausdorff distance condensity taken hausdorff measure noncompactness tool present estimate measure infinite union apply result infinite iterated function systems
Affiliations des auteurs :
K. Leśniak 1
@article{10_4064_ba52_1_1,
author = {K. Le\'sniak},
title = {Infinite {Iterated} {Function} {Systems:
} {A} {Multivalued} {Approach}},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {1--8},
publisher = {mathdoc},
volume = {52},
number = {1},
year = {2004},
doi = {10.4064/ba52-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba52-1-1/}
}
TY - JOUR AU - K. Leśniak TI - Infinite Iterated Function Systems: A Multivalued Approach JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2004 SP - 1 EP - 8 VL - 52 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba52-1-1/ DO - 10.4064/ba52-1-1 LA - en ID - 10_4064_ba52_1_1 ER -
K. Leśniak. Infinite Iterated Function Systems: A Multivalued Approach. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 52 (2004) no. 1, pp. 1-8. doi: 10.4064/ba52-1-1
Cité par Sources :