Revisiting Liebmann’s theorem in higher codimension
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 67 (2019) no. 2, pp. 179-185
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We deal with compact surfaces immersed with flat normal bundle and parallel normalized mean curvature vector field in a space form $\mathbb {Q}_c^{2+p}$ of constant sectional curvature $c\in \{-1,0,1\}$. Such a surface is called an LW-surface when it satisfies a linear Weingarten condition of the type $K=aH+b$ for some real constants $a$ and $b$, where $H$ and $K$ denote the mean and Gaussian curvatures, respectively. In this setting, we extend the classical rigidity theorem of Liebmann (1899) showing that a non-flat LW-surface with non-negative Gaussian curvature must be isometric to a totally umbilical round sphere.
Keywords:
compact surfaces immersed flat normal bundle parallel normalized mean curvature vector field space form mathbb constant sectional curvature surface called lw surface satisfies linear weingarten condition type real constants where denote mean gaussian curvatures respectively setting extend classical rigidity theorem liebmann nbsp showing non flat lw surface non negative gaussian curvature isometric totally umbilical round sphere
Affiliations des auteurs :
Jogli G. Araújo 1 ; Henrique F. de Lima 2
@article{10_4064_ba190514_30_5,
author = {Jogli G. Ara\'ujo and Henrique F. de Lima},
title = {Revisiting {Liebmann{\textquoteright}s} theorem in higher codimension},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
pages = {179--185},
publisher = {mathdoc},
volume = {67},
number = {2},
year = {2019},
doi = {10.4064/ba190514-30-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ba190514-30-5/}
}
TY - JOUR AU - Jogli G. Araújo AU - Henrique F. de Lima TI - Revisiting Liebmann’s theorem in higher codimension JO - Bulletin of the Polish Academy of Sciences. Mathematics PY - 2019 SP - 179 EP - 185 VL - 67 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ba190514-30-5/ DO - 10.4064/ba190514-30-5 LA - en ID - 10_4064_ba190514_30_5 ER -
%0 Journal Article %A Jogli G. Araújo %A Henrique F. de Lima %T Revisiting Liebmann’s theorem in higher codimension %J Bulletin of the Polish Academy of Sciences. Mathematics %D 2019 %P 179-185 %V 67 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ba190514-30-5/ %R 10.4064/ba190514-30-5 %G en %F 10_4064_ba190514_30_5
Jogli G. Araújo; Henrique F. de Lima. Revisiting Liebmann’s theorem in higher codimension. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 67 (2019) no. 2, pp. 179-185. doi: 10.4064/ba190514-30-5
Cité par Sources :