On moduli spaces of semistable sheaves
on Enriques surfaces
Annales Polonici Mathematici, Tome 99 (2010) no. 3, pp. 305-321
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We describe some one-dimensional moduli spaces of rank $2$ Gieseker semistable sheaves on an Enriques surface improving earlier results of H. Kim. In the case of a nodal Enriques surface the moduli spaces obtained are reducible for general polarizations. For unnodal Enriques surfaces we show how to reduce the study of moduli spaces of high even rank Gieseker semistable sheaves to low ranks. To prove this we use the method of K. Yoshioka who showed that in the odd rank case, one can reduce to rank $1$.
Keywords:
describe one dimensional moduli spaces rank gieseker semistable sheaves enriques surface improving earlier results kim nodal enriques surface moduli spaces obtained reducible general polarizations unnodal enriques surfaces reduce study moduli spaces high even rank gieseker semistable sheaves low ranks prove method yoshioka who showed odd rank reduce rank
Affiliations des auteurs :
Marcin Hauzer 1
@article{10_4064_ap99_3_7,
author = {Marcin Hauzer},
title = {On moduli spaces of semistable sheaves
on {Enriques} surfaces},
journal = {Annales Polonici Mathematici},
pages = {305--321},
publisher = {mathdoc},
volume = {99},
number = {3},
year = {2010},
doi = {10.4064/ap99-3-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap99-3-7/}
}
Marcin Hauzer. On moduli spaces of semistable sheaves on Enriques surfaces. Annales Polonici Mathematici, Tome 99 (2010) no. 3, pp. 305-321. doi: 10.4064/ap99-3-7
Cité par Sources :