Thom polynomials and Schur functions: the singularities $III_{2,3}(-)$
Annales Polonici Mathematici, Tome 99 (2010) no. 3, pp. 295-304.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give a closed formula for the Thom polynomials of the singularities $III_{2,3}(-)$ in terms of Schur functions. Our computations combine the characterization of the Thom polynomials via the “method of restriction equations” of Rimányi et al. with the techniques of Schur functions.
DOI : 10.4064/ap99-3-6
Keywords: closed formula thom polynomials singularities iii terms schur functions computations combine characterization thom polynomials via method restriction equations rim nyi techniques schur functions

Özer Öztürk 1

1 Institute of Mathematics Polish Academy of Sciences 00-956 Warszawa, Poland
@article{10_4064_ap99_3_6,
     author = {\"Ozer \"Ozt\"urk},
     title = {Thom polynomials and {Schur} functions:
 the singularities $III_{2,3}(-)$},
     journal = {Annales Polonici Mathematici},
     pages = {295--304},
     publisher = {mathdoc},
     volume = {99},
     number = {3},
     year = {2010},
     doi = {10.4064/ap99-3-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap99-3-6/}
}
TY  - JOUR
AU  - Özer Öztürk
TI  - Thom polynomials and Schur functions:
 the singularities $III_{2,3}(-)$
JO  - Annales Polonici Mathematici
PY  - 2010
SP  - 295
EP  - 304
VL  - 99
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap99-3-6/
DO  - 10.4064/ap99-3-6
LA  - en
ID  - 10_4064_ap99_3_6
ER  - 
%0 Journal Article
%A Özer Öztürk
%T Thom polynomials and Schur functions:
 the singularities $III_{2,3}(-)$
%J Annales Polonici Mathematici
%D 2010
%P 295-304
%V 99
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap99-3-6/
%R 10.4064/ap99-3-6
%G en
%F 10_4064_ap99_3_6
Özer Öztürk. Thom polynomials and Schur functions:
 the singularities $III_{2,3}(-)$. Annales Polonici Mathematici, Tome 99 (2010) no. 3, pp. 295-304. doi : 10.4064/ap99-3-6. http://geodesic.mathdoc.fr/articles/10.4064/ap99-3-6/

Cité par Sources :