Symplectic classification of parametric complex plane curves
Annales Polonici Mathematici, Tome 99 (2010) no. 3, pp. 263-284
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Based on the discovery that the $\delta $-invariant is the symplectic codimension of a parametric plane curve singularity, we classify the simple and uni-modal singularities of parametric plane curves under symplectic equivalence. A new symplectic deformation theory of curve singularities is established, and the corresponding cyclic symplectic moduli spaces are reconstructed as canonical ambient spaces for the diffeomorphism moduli spaces which are no longer Hausdorff spaces.
Keywords:
based discovery delta invariant symplectic codimension parametric plane curve singularity classify simple uni modal singularities parametric plane curves under symplectic equivalence symplectic deformation theory curve singularities established corresponding cyclic symplectic moduli spaces reconstructed canonical ambient spaces diffeomorphism moduli spaces which longer hausdorff spaces
Affiliations des auteurs :
Goo Ishikawa 1 ; Stanisław Janeczko 2
@article{10_4064_ap99_3_4,
author = {Goo Ishikawa and Stanis{\l}aw Janeczko},
title = {Symplectic classification of parametric complex plane curves},
journal = {Annales Polonici Mathematici},
pages = {263--284},
publisher = {mathdoc},
volume = {99},
number = {3},
year = {2010},
doi = {10.4064/ap99-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap99-3-4/}
}
TY - JOUR AU - Goo Ishikawa AU - Stanisław Janeczko TI - Symplectic classification of parametric complex plane curves JO - Annales Polonici Mathematici PY - 2010 SP - 263 EP - 284 VL - 99 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap99-3-4/ DO - 10.4064/ap99-3-4 LA - en ID - 10_4064_ap99_3_4 ER -
Goo Ishikawa; Stanisław Janeczko. Symplectic classification of parametric complex plane curves. Annales Polonici Mathematici, Tome 99 (2010) no. 3, pp. 263-284. doi: 10.4064/ap99-3-4
Cité par Sources :