1Department of Mathematics Indian Institute of Technology Madras Chennai 600 036, India 2Department of Mathematics Indian Institute of Technology Madras Chennai-600 036, India
Annales Polonici Mathematici, Tome 99 (2010) no. 3, pp. 225-245
For $\gamma\in\mathbb C$ such that $|\gamma|\pi/2$ and $0\leq\beta1$, let
${\mathcal P}_{\gamma,\beta} $ denote
the class of all analytic functions $P$ in the unit disk $\mathbb{D}$
with $P(0)=1$ and
$$
{\rm Re}(e^{i\gamma}P(z))>\beta\cos\gamma\ \quad \hbox{in ${\mathbb D}$}.
$$
For any fixed $z_0\in\mathbb{D}$ and
$\lambda\in\overline{\mathbb{D}} $,
we shall determine the region of variability $V_{\mathcal{P}}(z_0,\lambda)$ for
$\int_0^{z_0}P(\zeta)\,d\zeta$ when $P$ ranges over the class
$$
\mathcal{P}(\lambda) =
\{ P\in{\mathcal P}_{\gamma,\beta} :
P'(0)=2(1-\beta)\lambda e^{-i\gamma}\cos\gamma
\}.
$$
As a consequence, we present the region of variability for some subclasses
of univalent functions. We also graphically illustrate the
region of variability for several sets of parameters.
1
Department of Mathematics Indian Institute of Technology Madras Chennai 600 036, India
2
Department of Mathematics Indian Institute of Technology Madras Chennai-600 036, India
@article{10_4064_ap99_3_2,
author = {Saminathan Ponnusamy and Allu Vasudevarao},
title = {Region of variability for functions with positive real part},
journal = {Annales Polonici Mathematici},
pages = {225--245},
year = {2010},
volume = {99},
number = {3},
doi = {10.4064/ap99-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap99-3-2/}
}
TY - JOUR
AU - Saminathan Ponnusamy
AU - Allu Vasudevarao
TI - Region of variability for functions with positive real part
JO - Annales Polonici Mathematici
PY - 2010
SP - 225
EP - 245
VL - 99
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap99-3-2/
DO - 10.4064/ap99-3-2
LA - en
ID - 10_4064_ap99_3_2
ER -
%0 Journal Article
%A Saminathan Ponnusamy
%A Allu Vasudevarao
%T Region of variability for functions with positive real part
%J Annales Polonici Mathematici
%D 2010
%P 225-245
%V 99
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/ap99-3-2/
%R 10.4064/ap99-3-2
%G en
%F 10_4064_ap99_3_2
Saminathan Ponnusamy; Allu Vasudevarao. Region of variability for functions with positive real part. Annales Polonici Mathematici, Tome 99 (2010) no. 3, pp. 225-245. doi: 10.4064/ap99-3-2