Region of variability for functions with positive real part
Annales Polonici Mathematici, Tome 99 (2010) no. 3, pp. 225-245
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For $\gamma\in\mathbb C$ such that $|\gamma|\pi/2$ and $0\leq\beta1$, let
${\mathcal P}_{\gamma,\beta} $ denote
the class of all analytic functions $P$ in the unit disk $\mathbb{D}$
with $P(0)=1$ and
$$
{\rm Re}(e^{i\gamma}P(z))>\beta\cos\gamma\ \quad \hbox{in ${\mathbb D}$}.
$$
For any fixed $z_0\in\mathbb{D}$ and
$\lambda\in\overline{\mathbb{D}} $,
we shall determine the region of variability $V_{\mathcal{P}}(z_0,\lambda)$ for
$\int_0^{z_0}P(\zeta)\,d\zeta$ when $P$ ranges over the class
$$
\mathcal{P}(\lambda) =
\{ P\in{\mathcal P}_{\gamma,\beta} :
P'(0)=2(1-\beta)\lambda e^{-i\gamma}\cos\gamma
\}.
$$
As a consequence, we present the region of variability for some subclasses
of univalent functions. We also graphically illustrate the
region of variability for several sets of parameters.
Keywords:
gamma mathbb gamma leq beta mathcal gamma beta denote class analytic functions unit disk mathbb gamma beta cos gamma quad hbox mathbb fixed mathbb lambda overline mathbb shall determine region variability mathcal lambda int zeta zeta ranges class mathcal lambda mathcal gamma beta beta lambda i gamma cos gamma consequence present region variability subclasses univalent functions graphically illustrate region variability several sets parameters
Affiliations des auteurs :
Saminathan Ponnusamy 1 ; Allu Vasudevarao 2
@article{10_4064_ap99_3_2,
author = {Saminathan Ponnusamy and Allu Vasudevarao},
title = {Region of variability for functions with positive real part},
journal = {Annales Polonici Mathematici},
pages = {225--245},
publisher = {mathdoc},
volume = {99},
number = {3},
year = {2010},
doi = {10.4064/ap99-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap99-3-2/}
}
TY - JOUR AU - Saminathan Ponnusamy AU - Allu Vasudevarao TI - Region of variability for functions with positive real part JO - Annales Polonici Mathematici PY - 2010 SP - 225 EP - 245 VL - 99 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap99-3-2/ DO - 10.4064/ap99-3-2 LA - en ID - 10_4064_ap99_3_2 ER -
%0 Journal Article %A Saminathan Ponnusamy %A Allu Vasudevarao %T Region of variability for functions with positive real part %J Annales Polonici Mathematici %D 2010 %P 225-245 %V 99 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap99-3-2/ %R 10.4064/ap99-3-2 %G en %F 10_4064_ap99_3_2
Saminathan Ponnusamy; Allu Vasudevarao. Region of variability for functions with positive real part. Annales Polonici Mathematici, Tome 99 (2010) no. 3, pp. 225-245. doi: 10.4064/ap99-3-2
Cité par Sources :