Region of variability for functions with positive real part
Annales Polonici Mathematici, Tome 99 (2010) no. 3, pp. 225-245.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For $\gamma\in\mathbb C$ such that $|\gamma|\pi/2$ and $0\leq\beta1$, let ${\mathcal P}_{\gamma,\beta} $ denote the class of all analytic functions $P$ in the unit disk $\mathbb{D}$ with $P(0)=1$ and $$ {\rm Re}(e^{i\gamma}P(z))>\beta\cos\gamma\ \quad \hbox{in ${\mathbb D}$}. $$ For any fixed $z_0\in\mathbb{D}$ and $\lambda\in\overline{\mathbb{D}} $, we shall determine the region of variability $V_{\mathcal{P}}(z_0,\lambda)$ for $\int_0^{z_0}P(\zeta)\,d\zeta$ when $P$ ranges over the class $$ \mathcal{P}(\lambda) = \{ P\in{\mathcal P}_{\gamma,\beta} : P'(0)=2(1-\beta)\lambda e^{-i\gamma}\cos\gamma \}. $$ As a consequence, we present the region of variability for some subclasses of univalent functions. We also graphically illustrate the region of variability for several sets of parameters.
DOI : 10.4064/ap99-3-2
Keywords: gamma mathbb gamma leq beta mathcal gamma beta denote class analytic functions unit disk mathbb gamma beta cos gamma quad hbox mathbb fixed mathbb lambda overline mathbb shall determine region variability mathcal lambda int zeta zeta ranges class mathcal lambda mathcal gamma beta beta lambda i gamma cos gamma consequence present region variability subclasses univalent functions graphically illustrate region variability several sets parameters

Saminathan Ponnusamy 1 ; Allu Vasudevarao 2

1 Department of Mathematics Indian Institute of Technology Madras Chennai 600 036, India
2 Department of Mathematics Indian Institute of Technology Madras Chennai-600 036, India
@article{10_4064_ap99_3_2,
     author = {Saminathan Ponnusamy and Allu Vasudevarao},
     title = {Region of variability for  functions with positive real part},
     journal = {Annales Polonici Mathematici},
     pages = {225--245},
     publisher = {mathdoc},
     volume = {99},
     number = {3},
     year = {2010},
     doi = {10.4064/ap99-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap99-3-2/}
}
TY  - JOUR
AU  - Saminathan Ponnusamy
AU  - Allu Vasudevarao
TI  - Region of variability for  functions with positive real part
JO  - Annales Polonici Mathematici
PY  - 2010
SP  - 225
EP  - 245
VL  - 99
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap99-3-2/
DO  - 10.4064/ap99-3-2
LA  - en
ID  - 10_4064_ap99_3_2
ER  - 
%0 Journal Article
%A Saminathan Ponnusamy
%A Allu Vasudevarao
%T Region of variability for  functions with positive real part
%J Annales Polonici Mathematici
%D 2010
%P 225-245
%V 99
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap99-3-2/
%R 10.4064/ap99-3-2
%G en
%F 10_4064_ap99_3_2
Saminathan Ponnusamy; Allu Vasudevarao. Region of variability for  functions with positive real part. Annales Polonici Mathematici, Tome 99 (2010) no. 3, pp. 225-245. doi : 10.4064/ap99-3-2. http://geodesic.mathdoc.fr/articles/10.4064/ap99-3-2/

Cité par Sources :