The existence of two continuous solutions for a nonlinear singular elliptic equation with natural growth in the gradient is proved for the Dirichlet problem in the unit ball centered at the origin. The first continuous solution is positive and maximal; it is obtained via the regularization method. The second continuous solution is zero at the origin, and follows by considering the corresponding radial ODE and by sub-sup solutions method.
@article{10_4064_ap99_2_4,
author = {Wen-shu Zhou and Xiao-dan Wei},
title = {Multiplicity of solutions for a singular
$p$-laplacian elliptic equation},
journal = {Annales Polonici Mathematici},
pages = {157--180},
year = {2010},
volume = {99},
number = {2},
doi = {10.4064/ap99-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap99-2-4/}
}
TY - JOUR
AU - Wen-shu Zhou
AU - Xiao-dan Wei
TI - Multiplicity of solutions for a singular
$p$-laplacian elliptic equation
JO - Annales Polonici Mathematici
PY - 2010
SP - 157
EP - 180
VL - 99
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap99-2-4/
DO - 10.4064/ap99-2-4
LA - en
ID - 10_4064_ap99_2_4
ER -
%0 Journal Article
%A Wen-shu Zhou
%A Xiao-dan Wei
%T Multiplicity of solutions for a singular
$p$-laplacian elliptic equation
%J Annales Polonici Mathematici
%D 2010
%P 157-180
%V 99
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/ap99-2-4/
%R 10.4064/ap99-2-4
%G en
%F 10_4064_ap99_2_4
Wen-shu Zhou; Xiao-dan Wei. Multiplicity of solutions for a singular
$p$-laplacian elliptic equation. Annales Polonici Mathematici, Tome 99 (2010) no. 2, pp. 157-180. doi: 10.4064/ap99-2-4