Oscillation criteria for third order nonlinear delay dynamic equations on time scales
Annales Polonici Mathematici, Tome 99 (2010) no. 2, pp. 143-156
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
By means of Riccati transformation technique, we establish some
new oscillation criteria for third-order nonlinear delay
dynamic equations
$$
((x^{\Delta\Delta}(t))^\gamma)^\Delta+p(t)x^\gamma(\tau(t))=0
$$
on a time scale $\mathbb{T};$ here $\gamma>0$ is a quotient of odd
positive integers and $p$ a real-valued positive rd-continuous
function defined on $\mathbb{T}.$ Our results not
only extend and improve the results of T. S. Hassan
[Math. Comput. Modelling 49 (2009)] but
also unify the results on oscillation of third-order delay
differential equations and third-order delay difference
equations.
Keywords:
means riccati transformation technique establish oscillation criteria third order nonlinear delay dynamic equations delta delta gamma delta gamma tau time scale mathbb here gamma quotient odd positive integers real valued positive rd continuous function defined mathbb results only extend improve results hassan math comput modelling unify results oscillation third order delay differential equations third order delay difference equations
Affiliations des auteurs :
Zhenlai Han 1 ; Tongxing Li 2 ; Shurong Sun 3 ; Fengjuan Cao 2
@article{10_4064_ap99_2_3,
author = {Zhenlai Han and Tongxing Li and Shurong Sun and Fengjuan Cao},
title = {Oscillation criteria for third order nonlinear delay dynamic equations on time scales},
journal = {Annales Polonici Mathematici},
pages = {143--156},
year = {2010},
volume = {99},
number = {2},
doi = {10.4064/ap99-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap99-2-3/}
}
TY - JOUR AU - Zhenlai Han AU - Tongxing Li AU - Shurong Sun AU - Fengjuan Cao TI - Oscillation criteria for third order nonlinear delay dynamic equations on time scales JO - Annales Polonici Mathematici PY - 2010 SP - 143 EP - 156 VL - 99 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap99-2-3/ DO - 10.4064/ap99-2-3 LA - en ID - 10_4064_ap99_2_3 ER -
%0 Journal Article %A Zhenlai Han %A Tongxing Li %A Shurong Sun %A Fengjuan Cao %T Oscillation criteria for third order nonlinear delay dynamic equations on time scales %J Annales Polonici Mathematici %D 2010 %P 143-156 %V 99 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/ap99-2-3/ %R 10.4064/ap99-2-3 %G en %F 10_4064_ap99_2_3
Zhenlai Han; Tongxing Li; Shurong Sun; Fengjuan Cao. Oscillation criteria for third order nonlinear delay dynamic equations on time scales. Annales Polonici Mathematici, Tome 99 (2010) no. 2, pp. 143-156. doi: 10.4064/ap99-2-3
Cité par Sources :