Oscillation criteria for third order nonlinear delay dynamic equations on time scales
Annales Polonici Mathematici, Tome 99 (2010) no. 2, pp. 143-156.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

By means of Riccati transformation technique, we establish some new oscillation criteria for third-order nonlinear delay dynamic equations $$ ((x^{\Delta\Delta}(t))^\gamma)^\Delta+p(t)x^\gamma(\tau(t))=0 $$ on a time scale $\mathbb{T};$ here $\gamma>0$ is a quotient of odd positive integers and $p$ a real-valued positive rd-continuous function defined on $\mathbb{T}.$ Our results not only extend and improve the results of T. S. Hassan [Math. Comput. Modelling 49 (2009)] but also unify the results on oscillation of third-order delay differential equations and third-order delay difference equations.
DOI : 10.4064/ap99-2-3
Keywords: means riccati transformation technique establish oscillation criteria third order nonlinear delay dynamic equations delta delta gamma delta gamma tau time scale mathbb here gamma quotient odd positive integers real valued positive rd continuous function defined mathbb results only extend improve results hassan math comput modelling unify results oscillation third order delay differential equations third order delay difference equations

Zhenlai Han 1 ; Tongxing Li 2 ; Shurong Sun 3 ; Fengjuan Cao 2

1 School of Science University of Jinan Jinan, Shandong 250022, P.R. China and School of Control Science and Engineering Shandong University Jinan, Shandong 250061, P.R. China
2 School of Science University of Jinan Jinan, Shandong 250022, P.R. China
3 School of Science University of Jinan Jinan, Shandong 250022, P.R. China and Department of Mathematics and Statistics Missouri University of Science and Technology Rolla, MO 65409-0020, U.S.A.
@article{10_4064_ap99_2_3,
     author = {Zhenlai Han and Tongxing Li and Shurong Sun and Fengjuan Cao},
     title = {Oscillation criteria for third order nonlinear delay dynamic equations on time scales},
     journal = {Annales Polonici Mathematici},
     pages = {143--156},
     publisher = {mathdoc},
     volume = {99},
     number = {2},
     year = {2010},
     doi = {10.4064/ap99-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap99-2-3/}
}
TY  - JOUR
AU  - Zhenlai Han
AU  - Tongxing Li
AU  - Shurong Sun
AU  - Fengjuan Cao
TI  - Oscillation criteria for third order nonlinear delay dynamic equations on time scales
JO  - Annales Polonici Mathematici
PY  - 2010
SP  - 143
EP  - 156
VL  - 99
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap99-2-3/
DO  - 10.4064/ap99-2-3
LA  - en
ID  - 10_4064_ap99_2_3
ER  - 
%0 Journal Article
%A Zhenlai Han
%A Tongxing Li
%A Shurong Sun
%A Fengjuan Cao
%T Oscillation criteria for third order nonlinear delay dynamic equations on time scales
%J Annales Polonici Mathematici
%D 2010
%P 143-156
%V 99
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap99-2-3/
%R 10.4064/ap99-2-3
%G en
%F 10_4064_ap99_2_3
Zhenlai Han; Tongxing Li; Shurong Sun; Fengjuan Cao. Oscillation criteria for third order nonlinear delay dynamic equations on time scales. Annales Polonici Mathematici, Tome 99 (2010) no. 2, pp. 143-156. doi : 10.4064/ap99-2-3. http://geodesic.mathdoc.fr/articles/10.4064/ap99-2-3/

Cité par Sources :