Rectilinearization of functions definable by a Weierstrass system and its applications
Annales Polonici Mathematici, Tome 99 (2010) no. 2, pp. 129-141.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

This paper presents several theorems on the rectilinearization of functions definable by a convergent Weierstrass system, as well as their applications to decomposition into special cubes and quantifier elimination.
DOI : 10.4064/ap99-2-2
Keywords: paper presents several theorems rectilinearization functions definable convergent weierstrass system their applications decomposition special cubes quantifier elimination

Krzysztof Jan Nowak 1

1 Institute of Mathematics Jagiellonian University Łojasiewicza 6 30-348 Kraków, Poland
@article{10_4064_ap99_2_2,
     author = {Krzysztof Jan Nowak},
     title = {Rectilinearization of functions definable by 
 a {Weierstrass} system and its applications},
     journal = {Annales Polonici Mathematici},
     pages = {129--141},
     publisher = {mathdoc},
     volume = {99},
     number = {2},
     year = {2010},
     doi = {10.4064/ap99-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap99-2-2/}
}
TY  - JOUR
AU  - Krzysztof Jan Nowak
TI  - Rectilinearization of functions definable by 
 a Weierstrass system and its applications
JO  - Annales Polonici Mathematici
PY  - 2010
SP  - 129
EP  - 141
VL  - 99
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap99-2-2/
DO  - 10.4064/ap99-2-2
LA  - en
ID  - 10_4064_ap99_2_2
ER  - 
%0 Journal Article
%A Krzysztof Jan Nowak
%T Rectilinearization of functions definable by 
 a Weierstrass system and its applications
%J Annales Polonici Mathematici
%D 2010
%P 129-141
%V 99
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap99-2-2/
%R 10.4064/ap99-2-2
%G en
%F 10_4064_ap99_2_2
Krzysztof Jan Nowak. Rectilinearization of functions definable by 
 a Weierstrass system and its applications. Annales Polonici Mathematici, Tome 99 (2010) no. 2, pp. 129-141. doi : 10.4064/ap99-2-2. http://geodesic.mathdoc.fr/articles/10.4064/ap99-2-2/

Cité par Sources :