Weighted $\theta$-incomplete pluripotential theory
Annales Polonici Mathematici, Tome 99 (2010) no. 2, pp. 107-128
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Weighted pluripotential theory is a rapidly developing
area; and Callaghan [Ann. Polon. Math. 90 (2007)] recently introduced
$\theta$-incomplete polynomials in $\mathbb C$ for $n>1$. In this paper
we combine these two theories by defining weighted
$\theta$-incomplete pluripotential theory. We define weighted
$\theta$-incomplete extremal functions and obtain a
Siciak–Zahariuta type equality in terms of $\theta$-incomplete
polynomials. Finally we prove that the extremal functions can be
recovered using orthonormal polynomials and we demonstrate a result on strong asymptotics of Bergman functions in the spirit of Berman [Indiana Univ. Math. J. 58 (2009)].
Keywords:
weighted pluripotential theory rapidly developing area callaghan ann polon math recently introduced theta incomplete polynomials mathbb paper combine these theories defining weighted theta incomplete pluripotential theory define weighted theta incomplete extremal functions obtain siciak zahariuta type equality terms theta incomplete polynomials finally prove extremal functions recovered using orthonormal polynomials demonstrate result strong asymptotics bergman functions spirit berman indiana univ math
Affiliations des auteurs :
Muhammed Ali Alan 1
@article{10_4064_ap99_2_1,
author = {Muhammed Ali Alan},
title = {Weighted $\theta$-incomplete pluripotential theory},
journal = {Annales Polonici Mathematici},
pages = {107--128},
publisher = {mathdoc},
volume = {99},
number = {2},
year = {2010},
doi = {10.4064/ap99-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap99-2-1/}
}
Muhammed Ali Alan. Weighted $\theta$-incomplete pluripotential theory. Annales Polonici Mathematici, Tome 99 (2010) no. 2, pp. 107-128. doi: 10.4064/ap99-2-1
Cité par Sources :