Weighted $\theta$-incomplete pluripotential theory
Annales Polonici Mathematici, Tome 99 (2010) no. 2, pp. 107-128.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Weighted pluripotential theory is a rapidly developing area; and Callaghan [Ann. Polon. Math. 90 (2007)] recently introduced $\theta$-incomplete polynomials in $\mathbb C$ for $n>1$. In this paper we combine these two theories by defining weighted $\theta$-incomplete pluripotential theory. We define weighted $\theta$-incomplete extremal functions and obtain a Siciak–Zahariuta type equality in terms of $\theta$-incomplete polynomials. Finally we prove that the extremal functions can be recovered using orthonormal polynomials and we demonstrate a result on strong asymptotics of Bergman functions in the spirit of Berman [Indiana Univ. Math. J. 58 (2009)].
DOI : 10.4064/ap99-2-1
Keywords: weighted pluripotential theory rapidly developing area callaghan ann polon math recently introduced theta incomplete polynomials mathbb paper combine these theories defining weighted theta incomplete pluripotential theory define weighted theta incomplete extremal functions obtain siciak zahariuta type equality terms theta incomplete polynomials finally prove extremal functions recovered using orthonormal polynomials demonstrate result strong asymptotics bergman functions spirit berman indiana univ math

Muhammed Ali Alan 1

1 Department of Mathematics Indiana University Bloomington, IN 47405, U.S.A.
@article{10_4064_ap99_2_1,
     author = {Muhammed Ali Alan},
     title = {Weighted  $\theta$-incomplete  pluripotential theory},
     journal = {Annales Polonici Mathematici},
     pages = {107--128},
     publisher = {mathdoc},
     volume = {99},
     number = {2},
     year = {2010},
     doi = {10.4064/ap99-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap99-2-1/}
}
TY  - JOUR
AU  - Muhammed Ali Alan
TI  - Weighted  $\theta$-incomplete  pluripotential theory
JO  - Annales Polonici Mathematici
PY  - 2010
SP  - 107
EP  - 128
VL  - 99
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap99-2-1/
DO  - 10.4064/ap99-2-1
LA  - en
ID  - 10_4064_ap99_2_1
ER  - 
%0 Journal Article
%A Muhammed Ali Alan
%T Weighted  $\theta$-incomplete  pluripotential theory
%J Annales Polonici Mathematici
%D 2010
%P 107-128
%V 99
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap99-2-1/
%R 10.4064/ap99-2-1
%G en
%F 10_4064_ap99_2_1
Muhammed Ali Alan. Weighted  $\theta$-incomplete  pluripotential theory. Annales Polonici Mathematici, Tome 99 (2010) no. 2, pp. 107-128. doi : 10.4064/ap99-2-1. http://geodesic.mathdoc.fr/articles/10.4064/ap99-2-1/

Cité par Sources :