On a Monge–Ampère type equation in the Cegrell class $\mathcal{E}_{\chi}$
Annales Polonici Mathematici, Tome 99 (2010) no. 1, pp. 89-97
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $\Omega$ be a bounded hyperconvex domain in ${\mathbb C}{n}$ and let $\mu$ be a positive and finite
measure which vanishes on all pluripolar subsets of $\Omega$. We prove that for every continuous and
strictly increasing function $\chi:(-\infty,0) \to (-\infty,0)$ there exists a negative
plurisubharmonic function $u$ which solves the Monge–Ampère type equation
$$
-\chi(u)(dd^cu)^n = d\mu.
$$
Under some additional assumption the solution $u$ is uniquely determined.
Keywords:
omega bounded hyperconvex domain mathbb positive finite measure which vanishes pluripolar subsets omega prove every continuous strictly increasing function chi infty infty there exists negative plurisubharmonic function which solves monge amp type equation chi under additional assumption solution uniquely determined
Affiliations des auteurs :
Rafa/l Czyż 1
@article{10_4064_ap99_1_8,
author = {Rafa/l Czy\.z},
title = {On a {Monge{\textendash}Amp\`ere} type equation in the {Cegrell} class $\mathcal{E}_{\chi}$},
journal = {Annales Polonici Mathematici},
pages = {89--97},
year = {2010},
volume = {99},
number = {1},
doi = {10.4064/ap99-1-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap99-1-8/}
}
Rafa/l Czyż. On a Monge–Ampère type equation in the Cegrell class $\mathcal{E}_{\chi}$. Annales Polonici Mathematici, Tome 99 (2010) no. 1, pp. 89-97. doi: 10.4064/ap99-1-8
Cité par Sources :