Forced oscillation of third order nonlinear dynamic equations on time scales
Annales Polonici Mathematici, Tome 99 (2010) no. 1, pp. 79-87
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Consider the third order nonlinear dynamic equation
$$
x^{\Delta\Delta\Delta}(t)+p(t)f(x)=g(t),\tag{$*$}
$$
on a time scale $\mathbb T$ which is unbounded above. The function $f \in
C(\mathcal R,\mathcal R)$ is assumed to satisfy $xf(x)>0$ for $x\neq 0$ and be nondecreasing.
We study the oscillatory behaviour of solutions of $(*)$. As an
application,
we find that the nonlinear difference equation
$$
\Delta^3x(n)+n^{\alpha}|x|^\gamma {\rm sgn}(n)=(-1)^nn^c,
$$
where $\alpha\geq -1$, $\gamma>0$, $c>3$, is oscillatory.
Keywords:
consider third order nonlinear dynamic equation delta delta delta x tag * time scale mathbb which unbounded above function mathcal mathcal assumed satisfy neq nondecreasing study oscillatory behaviour solutions * application nonlinear difference equation delta alpha gamma sgn where alpha geq gamma oscillatory
Affiliations des auteurs :
Baoguo Jia 1
@article{10_4064_ap99_1_7,
author = {Baoguo Jia},
title = {Forced oscillation of third order nonlinear dynamic equations on time scales},
journal = {Annales Polonici Mathematici},
pages = {79--87},
year = {2010},
volume = {99},
number = {1},
doi = {10.4064/ap99-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap99-1-7/}
}
Baoguo Jia. Forced oscillation of third order nonlinear dynamic equations on time scales. Annales Polonici Mathematici, Tome 99 (2010) no. 1, pp. 79-87. doi: 10.4064/ap99-1-7
Cité par Sources :