Existence and multiplicity results for a nonlinear stationary Schrödinger equation
Annales Polonici Mathematici, Tome 99 (2010) no. 1, pp. 39-43
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We revisit Kristály's result on the
existence of weak solutions of the Schrödinger equation of the form
$$
-{\mit\Delta} u+a(x)u=\lambda b(x)f(u), \quad\ x\in\mathbb{R}^N,\, u\in H^1(\mathbb{R}^N),
$$
where $\lambda$ is a positive parameter, $a$ and $b$ are positive functions,
while $f:\mathbb{R}\rightarrow\mathbb{R}$ is sublinear
at infinity and superlinear at the origin. In particular, by using
Ricceri's recent three critical points theorem, we show that,
under the same hypotheses, a much more precise conclusion can be obtained.
Keywords:
revisit krist lys result existence weak solutions schr dinger equation form mit delta u lambda u quad mathbb mathbb where lambda positive parameter positive functions while mathbb rightarrow mathbb sublinear infinity superlinear origin particular using ricceris recent three critical points theorem under hypotheses much precise conclusion obtained
Affiliations des auteurs :
Danila Sandra Moschetto 1
@article{10_4064_ap99_1_3,
author = {Danila Sandra Moschetto},
title = {Existence and multiplicity results for a nonlinear stationary {Schr\"odinger} equation},
journal = {Annales Polonici Mathematici},
pages = {39--43},
year = {2010},
volume = {99},
number = {1},
doi = {10.4064/ap99-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap99-1-3/}
}
TY - JOUR AU - Danila Sandra Moschetto TI - Existence and multiplicity results for a nonlinear stationary Schrödinger equation JO - Annales Polonici Mathematici PY - 2010 SP - 39 EP - 43 VL - 99 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap99-1-3/ DO - 10.4064/ap99-1-3 LA - en ID - 10_4064_ap99_1_3 ER -
Danila Sandra Moschetto. Existence and multiplicity results for a nonlinear stationary Schrödinger equation. Annales Polonici Mathematici, Tome 99 (2010) no. 1, pp. 39-43. doi: 10.4064/ap99-1-3
Cité par Sources :