Fonctions biharmoniques adjointes
Annales Polonici Mathematici, Tome 99 (2010) no. 1, pp. 1-21
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The study of the equation $(L_2L_1)^* h= 0$ or of the equivalent system $L_{2}^{\ast }h_{2}=-h_{1}$, $ L_{1}^{\ast }h_{1}=0$, where $L_{j}$ $(j=1,2)$ is a second order elliptic differential operator, leads us to the following general framework: Starting from a biharmonic space, for example the space of solutions $(u_{1},u_{2})$ of the system $L_{1}u_{1}=-u_{2}$, $ L_{2}u_{2}=0$, $L_{j}$ $(j=1,2)$ being elliptic or parabolic, and by means of its Green pairs, we construct the associated adjoint biharmonic space which is in duality with the initial one.
Mots-clés :
study equation * equivalent system ast h ast where second order elliptic differential operator leads following general framework starting biharmonic space example space solutions system u being elliptic parabolic means its green pairs construct associated adjoint biharmonic space which duality initial
Affiliations des auteurs :
Emmanuel P. Smyrnelis 1
@article{10_4064_ap99_1_1,
author = {Emmanuel P. Smyrnelis},
title = {Fonctions biharmoniques adjointes},
journal = {Annales Polonici Mathematici},
pages = {1--21},
publisher = {mathdoc},
volume = {99},
number = {1},
year = {2010},
doi = {10.4064/ap99-1-1},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap99-1-1/}
}
Emmanuel P. Smyrnelis. Fonctions biharmoniques adjointes. Annales Polonici Mathematici, Tome 99 (2010) no. 1, pp. 1-21. doi: 10.4064/ap99-1-1
Cité par Sources :