On continuous composition operators
Annales Polonici Mathematici, Tome 98 (2010) no. 3, pp. 273-282
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $I \subset \Bbb R$ be an interval, $Y$ be
a normed linear space and $Z$ be a Banach space. We investigate
the Banach space Lip$_{2}(I,Z)$ of all functions $\psi:I\to Z$
such that
$$
M_{\psi}:=\sup \{\|[r,s,t;\psi]\|: r s t,\, r,s,t\in I\}\infty,
$$
where
$$
[r,s,t;\psi]:=\frac{(s-r)\psi(t)+(t-s)\psi(r)-(t-r)\psi(s)}
{(t-r)(t-s)(s-r)}.
$$
We show that $\psi\in$ Lip$_{2}(I,Z)$ if and only if $\psi$ is
differentiable and its derivative $\psi'$ is Lipschitzian.Suppose the composition operator $N$ generated by $h:I \times
Y\rightarrow Z$,
$$
(N\varphi)(t):= h(t,\varphi(t)),
$$
maps the set $\mathcal{A}(I,Y)$ of all affine functions $\varphi:
I\rightarrow Y$ into Lip$_{2}(I,Z)$. We prove that if $N$ is
continuous and $M_{\psi} \leq M$ for some constant $M>0$,
where $\psi(t)=N(t,\varphi(t))$, then
$$
h(t,y)=a(y)+b(t), \quad\ t \in I, \,y \in Y,
$$
for some continuous linear $a:Y\rightarrow Z$ and $b \in
$ Lip$_{2}(I,Z)$. Lipschitzian and Hölder composition
operators are also investigated.
Keywords:
subset bbb interval normed linear space banach space investigate banach space lip functions psi psi sup psi infty where psi frac s r psi t s psi t r psi t r t s s r psi lip only psi differentiable its derivative psi lipschitzian suppose composition operator generated times rightarrow varphi varphi maps set mathcal affine functions varphi rightarrow lip prove continuous psi leq constant where psi varphi quad continuous linear rightarrow lip lipschitzian lder composition operators investigated
Affiliations des auteurs :
Wilhelmina Smajdor 1
@article{10_4064_ap98_3_6,
author = {Wilhelmina Smajdor},
title = {On continuous composition operators},
journal = {Annales Polonici Mathematici},
pages = {273--282},
publisher = {mathdoc},
volume = {98},
number = {3},
year = {2010},
doi = {10.4064/ap98-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap98-3-6/}
}
Wilhelmina Smajdor. On continuous composition operators. Annales Polonici Mathematici, Tome 98 (2010) no. 3, pp. 273-282. doi: 10.4064/ap98-3-6
Cité par Sources :