On continuous composition operators
Annales Polonici Mathematici, Tome 98 (2010) no. 3, pp. 273-282.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $I \subset \Bbb R$ be an interval, $Y$ be a normed linear space and $Z$ be a Banach space. We investigate the Banach space Lip$_{2}(I,Z)$ of all functions $\psi:I\to Z$ such that $$ M_{\psi}:=\sup \{\|[r,s,t;\psi]\|: r s t,\, r,s,t\in I\}\infty, $$ where $$ [r,s,t;\psi]:=\frac{(s-r)\psi(t)+(t-s)\psi(r)-(t-r)\psi(s)} {(t-r)(t-s)(s-r)}. $$ We show that $\psi\in$ Lip$_{2}(I,Z)$ if and only if $\psi$ is differentiable and its derivative $\psi'$ is Lipschitzian.Suppose the composition operator $N$ generated by $h:I \times Y\rightarrow Z$, $$ (N\varphi)(t):= h(t,\varphi(t)), $$ maps the set $\mathcal{A}(I,Y)$ of all affine functions $\varphi: I\rightarrow Y$ into Lip$_{2}(I,Z)$. We prove that if $N$ is continuous and $M_{\psi} \leq M$ for some constant $M>0$, where $\psi(t)=N(t,\varphi(t))$, then $$ h(t,y)=a(y)+b(t), \quad\ t \in I, \,y \in Y, $$ for some continuous linear $a:Y\rightarrow Z$ and $b \in $ Lip$_{2}(I,Z)$. Lipschitzian and Hölder composition operators are also investigated.
DOI : 10.4064/ap98-3-6
Keywords: subset bbb interval normed linear space banach space investigate banach space lip functions psi psi sup psi infty where psi frac s r psi t s psi t r psi t r t s s r psi lip only psi differentiable its derivative psi lipschitzian suppose composition operator generated times rightarrow varphi varphi maps set mathcal affine functions varphi rightarrow lip prove continuous psi leq constant where psi varphi quad continuous linear rightarrow lip lipschitzian lder composition operators investigated

Wilhelmina Smajdor 1

1 Technical University of Technology Kaszubska 23 PL-44-100 Gliwice, Poland
@article{10_4064_ap98_3_6,
     author = {Wilhelmina Smajdor},
     title = {On continuous composition operators},
     journal = {Annales Polonici Mathematici},
     pages = {273--282},
     publisher = {mathdoc},
     volume = {98},
     number = {3},
     year = {2010},
     doi = {10.4064/ap98-3-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap98-3-6/}
}
TY  - JOUR
AU  - Wilhelmina Smajdor
TI  - On continuous composition operators
JO  - Annales Polonici Mathematici
PY  - 2010
SP  - 273
EP  - 282
VL  - 98
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap98-3-6/
DO  - 10.4064/ap98-3-6
LA  - en
ID  - 10_4064_ap98_3_6
ER  - 
%0 Journal Article
%A Wilhelmina Smajdor
%T On continuous composition operators
%J Annales Polonici Mathematici
%D 2010
%P 273-282
%V 98
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap98-3-6/
%R 10.4064/ap98-3-6
%G en
%F 10_4064_ap98_3_6
Wilhelmina Smajdor. On continuous composition operators. Annales Polonici Mathematici, Tome 98 (2010) no. 3, pp. 273-282. doi : 10.4064/ap98-3-6. http://geodesic.mathdoc.fr/articles/10.4064/ap98-3-6/

Cité par Sources :